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Preword

The condition monitoring and predictive maintenance communities are a very active research and
development area, with +150 lloT solutions being offered for industrial applications. Common
denominators are powerful cloud Al and ML capabilities combined with non-realtime data access.

The EWA sensor is designed with a different mindset, and the purpose of the current Whitepaper is to
address the following four differentiators:

1. Machine condition monitoring can be done without Artificial Intelligence (Al) and Machine Learning
(ML) algorithms because the main part of all machine failure modes is already well described by
ISO-18436. Knowing the fault signatures and understanding the physics of the machine have prone
the way to developing an autonomous sensor platform like the EWA sensor.

In general, when physical relations are known, there is no need for Al modeling - like the FFT
algorithm for frequency analysis, it will outperform any Al system regarding precision and speed -
anytime. But for unknown and complicated physical relations, Al and ML might be the only
solutions possible.

The EWA sensor can with benefit be used as a preprocessing unit for larger Al/ML cloud-based
Condition Monitoring Solutions (CMS), as the sensor provides access to both high-level
performance parameters and low-level raw data.

2. Combining Vibration Signature Analysis and Motor Current Signature Analysis will provide the
insight and robustness required for industrial applications. Sensor solutions based on vibration
measurement only, are very sensitive to contributions from surrounding operating machinery.

3. Plug and play — no setup is required for the EWA Sensor.

The orientation of the installation (horizontal/vertical) is auto-detected, the pole pair size of the
motor (1,2 or 3 pole pairs) is auto-detected, bearing faults are detected without requiring the
bearing type number, motor rotation speed and rotation direction is auto-detected, fixed valued
alarm levels are not needed, as Machine Health levels are adaptive tracking machine aging and
wear.

4, As an edge device with real-time analytics of 3D vibration signals and 3D magnetic signals, the EWA
Sensor performs a complete analysis of all parameters every second. This high-resolution parameter
set is used internal by the Machine Health center for baseline tracking and can be accessed
randomly by customers using Modbus interface.

The EWA sensor is offered as a retrofit sensor solution, but the autonomous edge platform can easily be
built into machines from factory. This will leverage machines like pumps from “just” being actuators to
become actually intelligent devices, and this is expected to become an important business differentiator for
machine manufacturers in the near future.
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1. Motivation

Rotation machinery has been the driving horse behind the Fourth Industrial Revolution (Industry 4.0), with
focus on system uptime and process optimization. Critical machines have always been nursed daily by
machine service operators to ensure proper lubrication, alignment, and general working conditions.

Machine maintenance has been based on experience of the service staff, using simple tools like “Engine
Defect Finder”, which is a stethoscope-like instrument used for the early detection of bearing and machine
damage — see the picture of top of this section (”"Original Maschinen und Motoren Defekt-Sucher” from the
company Apparatebau C. Richter, 1920). This manual machine inspection tool was both expensive and
difficult to scale, as the maintenance expertise was built up over many years by individual machine service
operators.

100 years after the development of the Engine Defect Finder instrument, machine inspection has been
taken over by scalable loT solutions, offering a wide portfolio of condition monitoring solutions. Today,
machine condition monitoring is a range of techniques and technologies used to monitor the condition and
performance of various machine parts within the machine.

These loT solutions primarily focus on extracting parameters to identifying significant changes
(abnormalities) that may indicate impending failures, as the collected data is analyzed to identify patterns or
trends that can indicate wear, damage, or other machine related issues. This offering is categorized as
Predictive Maintenance and serves to increase system uptime and reduce unnecessary maintenance
expenses. But predictive maintenance is only one part of the complete picture, that a condition monitoring
sensor can provide for the end user. Fortunately - the main part of the machine park will run for years
without any breakdown, so predictive maintenance becomes like an insurance (fear management) - you
don’t want to use it, and you don’t want to live without it. The second part of the complete picture is Daily
Operation Parameters. This offering provides valuable insights into machine operation and means for
process optimization - just to name three examples:
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e Energy optimization: saving energy by reducing motor rpm without harming or damaging machine
components. E.g. the gear box in a mixer will wear faster, if the oil is not rated to low speed
operation, which can be observed from the Gear Mesh Frequency vibration level.

e Resonance detection: observing vibration level for different motor rpm.

e Process control: avoid cavitation in some process facilities by reducing rpm, adjusting air diffusers
in a treatment plant by observing the mixer 3D vibration level. Too little air and the chemistry will
not work, but too much air will go behind the impeller, and the non-uniform load will break the
mixer of the tower, leading to a total breakdown.

The third part of the complete picture is EWA sensor data to support Artificial Intelligence and Machine
Learning. Continuous streaming of multi-dimensional, high resolution raw sensor data to a cloud platform is
neither a green technology nor technical feasible. Raw data stays at the source and information are
communicated to the cloud, where new insight is created by datamining across many installations and data
sources. As a preprocessing frontend for Al and ML platforms, the EWA sensor data can boost the
performance significantly.

By exploiting all three parts of the condition monitoring picture, the return of investment will be high
compared to other type of investments, because it has a 3D impact on the information flow in a production
facility. This is illustrated in the following , see Figure 1.

Al and ML support
* Preprocessing unit for large systems
* Access to raw data
* Statistical parameters like
Sample Standard deviation, Kurtosis,
Skewness and Crest Factor.
* Main machine parameters

e

Daily Process Insight

* Machine RPM

* Slip Speed

* Rotation Direction

* Vibration RMS Level
* Unbalance

* Cavitation Level

* Gear Mesh Frequency
* Magnetic Field RMS
* Start/stop count

* Operation Time

* Operation Duty Cycle

Predictive Maintenance
* Machine Health Center
* Baseline tracking

» Adaptive alarm levels

* Bearing Faults

* Gear Faults

* Water Hammer

* Mechanical Looseness

Figure 1: The EWA platform creates high-quality sensor data and insights for 1) Predictive Maintenance, 2) within Daily Process
Insights and 3) for Al and ML support.
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2. Predictive Maintenance

Regarding predictive maintenance a quote from the Nobel prize-winning Quantum physicist Niels Bohr
states: "It is difficult to make predictions, especially about the future”.

Forecasting can be a dangerous art, as it easily breakdown due to unexpected events that can’t be
incorporated into a model. To optimize production time and minimize maintenance cost, a shift from
normal prescriptive maintenance (regular time intervals) to predictive maintenance has emerged. It is
important to align expectations, as predictive maintenance is not the same as the ability to foresee the
future. Based on current condition monitoring values, and the trend leading up to this, a qualified
estimate can be made for the coming measurements. But there is no black magic involved in predictive
maintenance.

Predictive maintenance is not a time prediction (as e.g. 3641 hours to break down), but more an event
prediction, like the development of a bearing damage. In isolated applications with known constant
operation condition, models for time predictions can provide reasonable time estimation before
breakdown. But in real life applications, where nothing is constant and much is unknown, breakdown time
prediction will be with high uncertainty and of little practical value.
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The EWA Platform

3. The EWA Platform

A platform for condition monitoring must be build much more robust than the machinery it is monitoring
and protecting. It must withstand impact from many sources like vibration forces, high pressure cleaning,
tough handling, water and chemical liquids, pressure from submerged installations etc. The parameter
robustness must be ensured using a foundation of multiple signal sources. This makes the design of a
platform for condition monitoring a technical challenging task, and the EWA Platform is created with this
mindset.

Machine insight is obtained with real-time analytics of sensor signals, that capture the essential operation
of the machine. Many loT solutions are blinded 99% of the time, as they are only measuring on an hourly
basis to save battery power, and therefore often miss the big picture in many applications. The tradeoff
between a battery power wireless platform and a powered wired platform comes down to a choice
between flexibility and data insight. The EWA platform is designed for data insight, a wired edge processing
platform where all algorithms are updated every second - providing a time resolution 3600 times larger
than most loT platforms.

The quality of condition monitoring parameters is depending on two things — the algorithms and the sensor
signals. The purpose of the sensor signals is to capture the essential operation of the machine, and
robustness comes by using a multi sensor approach. Traditionally, vibration analysis has been the primary
tool for route-based maintenance, but for autonomous CMS systems, vibration analyze often comes in short
to be insufficient. The required robustness for autonomous CMS systems is obtained by combining two
fundamental signal domains - vibration and magnetic. The synergy is very strong, and it counteract many of
the limitation seen in “vibration-only” solutions.

Quality sensor signals require quality sensor components, and they are costly:

e The EWA vibration signals are measured in 3D, using three individual MEMS sensors (ADXL1002)
from Analog Devices. They are analog with a linear frequency response range from dc to 11 kHz, a
resonant frequency of 21 kHz and a noise floor of 25 pg/VHz. To this date, ADXL1002 is the best
(and most costly) accelerometer for embedded applications.

o The magnetic signal is measured using a 3D coil. The benefit of using coils from Hall sensors are
higher sensitivity, low noise, but at the expense of a frequency dependent response.

e The temperature is measured with an 12C TMP1075 temperature sensor, with a temperature
resolution of 0.0625°C and a temperature accuracy of £0.25°C, in the range from -55°C to +125°C.
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All sensor signals are sampled and processed by an ARM Cortex M7 microcontroller from
STMicroelectronics. The interface to the platform is both visual (4 LEDs for Power, Rotation Direction,
Modbus status, and Machine Health) and through a field bus interface (Modbus RTU). The principle is
illustrated in the following Figure 2:

r { EWA Sensor — Hardware Platform } ~

Rotation
Power Direction Modbus Alarm
—

NN

Vibration Sensor

24VDC

Modbus RTU

B
@,
L™ Processing Unit
STM32H7, 480MHz 32-bit Arm Cortex-M7 core
with double precision FPU

\ J

Figure 2: Schematics illustration of the EWA sensor platform. It illustrates the three sensor domains (magnetic, vibration,
temperature), the ARM Cortex-M7 MCU and outputs both as visual LEDs and through Modbus RTU interface.

Some condition monitoring parameters are best measured in the vibration domain and other parameters
are best measured in the magnetic domain. The overlap of parameters measurable in both domains benefit
in robustness, being immune from contributions from other operating machinery.

The EWA sensor is a new solution in this context, offering unprecedented insights by combining both
vibration and magnetic measurements together with edge analytics, where all parameters are recalculated
every second. The key benefits of a hybrid sensor platform like the EWA sensor platform, measuring both
the rotating centrifugal force in 3D and the rotating magnetic field in 3D, is selectivity and robustness. The
EWA sensor calculates a long range of parameters every second and states all results in a Modbus table for
customers’ access.

The EWA Sensor algorithm portfolio is illustrated in the following Figure 3.
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Baseline
Baseline
Baseline
Baseline

Vibration RMS-X Baseline
Vibration RMS-Y Baseline

Vibration RMS-Z Baseline

| Gear Mesh Fregeuncy Baseline Machine Health

Vibration RPM } Magnetic RPM [ | Slip Speed

Rotation Direction || Operation Time ‘ Number of start/stops || Duty Cycle

Motor Pole Pairs | Raw Data Access

l Vibration THD || Orientation V/H || False Brinelling _‘ ‘

[ vibration sT0-x | vibration sT0-v || vibration 510-2 | Mechanical Looseness | Planetary Gear | |

I Vibration Kurtosis Il Vibration Skewness Il Vibration Crest Factor ll Magnetic Strength I

Figure 3: The EWA sensor portfolio.

Algorithms are utilizing different parts of the vibration spectra, and to optimize processing speed and
spectral resolutions, the signal processing platform is designed as a multi-rate system with three different
sampling rates: 32kHz (Band 1), 8kHz (Band 2) and 2kHz (Band 3).

The following Figure 4 illustrates the three bands marked in red, on top of a vibration spectra plotted in
blue. The same figure also illustrates which part of the spectrum is used by the different algorithms:

Vibration

Level

1

Band 3

» I RPM
- i [ Il Unbalance

O P O 1 AT =

Parameters

------------------- o o o False Brinelling

t Rotation Direction
Water Hammer
- Mechanical Looseness
Gear Mesh Frequency

Bearing faults
Cavitation

T T T T T T
2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz  Frequency

v

Figure 4: The EWA sensor platform works with a vibration level bandwidth of 16 kHz. The blue curve is a monitored vibration signal,
where the y-axis states the actual vibration levels. On top of this figure is added, where the significant signatures for different sensor
parameters are placed in the frequency spectrum (the parameters are stated on the right-hand side of the plot).

Working in a 16 kHz bandwidth has two main benefits: it is possible to detect parameters with signatures in the higher frequency
band (e.g. cavitation), and it increases the fault detection parameter robustness.
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Many failure modes introduce a periodic structure in the vibration signal, and a corresponding harmonic
structure in the spectra. Higher bandwidth of the accelerometers will increase the number of detectable
harmonic components, and thereby boost the feature gain. This is a major differentiator from low spec
accelerometers often seen in many loT devices. Accelerometers with a bandwidth of 2-3 kHz will only
reproduce a finite number of harmonics, and thereby not boost the feature gain from the noise floor. One
algorithm that benefit from this phenomenon is the bearing fault detection algorithm based on Cepstral
Analysis.

The front of the EWA sensor contains four LED to provide basic information to the user and the walk-around
service staff, see Figure 5.

ROTATION

MODBUS

@ CW Rotation @ Active Modbus
No Rotation No Modbus
@ CCW Rotation @ Error Modbus

@ Power ON
Power OFF

ALARM

@ No Fault Detected
-‘-Warning Detected
@ Fault Detected

POWER & MODBUS

- POWER:24 VDC, 60mA
+ MODBUS RTU: 2.4-115.2 Kbaud

Figure 5: LED indications on EWA sensor front.
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4. Submersible sensor

The mechanical design of the EWA sensor is inspired by a diving watch, to enable it to be submersible into
tank environments and withstand harsh industrial applications.

The sensor house is constructed as a stainless-steel pressure capsule with O-ring gasket for both housing
and cable gland. It is rated for 10 meters depth but tested with a depth of 30 meters.

Figure 6: Encapsulation testing, of the EWA sensor.
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5. RPM (Rotation Per Minute)

The most important question regarding rotating machinery is to confirm whether the machine is operating
or not —do we have a rotation?

A lot of technology developments have emerged since machine RPM was measured using vibrating reed
tachometers —a mechanical resonance design with a range of accurately calibrated reeds, tuned to selected
frequencies of vibrations, indicating the speed in
RPM on the meter’s scale (see this section’s
header picture).

However, vibration on the line frequency is not a
clear sign of an operating machine - it could be
the operation of the machine next to you.

Magnetic RPM

To determine the rotation speed and rotation
direction for a machine, the EWA sensor
measures both the vibration force and magnetic
field using 3D sensors in both domains. By
combining Vibration Signature Analysis and
Motor Current Signature Analysis, a very robust
measure of the machine RPM is obtained for
both shaft and magnetic rotation.

RPM is a signed number, where positive RPM
indicates clockwise rotation (CW) and negative
RPM indicates counterclockwise (CCW) rotation.
In general, rotation speed is often regarded as a
fixed number, but nothing could be more
misleading. Figure 7: A machine produces both a rotating magnetic field (North
and South pole) and a rotating centripetal from unbalance mass.
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Rotation speed is a time function, and the RPM fluctuation of a pump impeller contains a lot of information
on the pump loading and the liquid homogeneity - this will be evidenced with the EWA sensor when the
RPM is estimated with one second time resolution - as illustrated in the following recording from a
wastewater pump application.

RPM Trace
1520 T T T T T

1500 -

1480 —

1460 -

1440 —

RPM

1420 -

1400 —

1380

1360

1340 — L“ - -
Magnetic RPM
Vibration RPM

1320 | | | | | | | |
15:40 15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25

Time

Figure 8: Measured RPM for a wastewater pump with a one second time resolution. The blue curve is the measured electrical speed
(in RPM) of the magnetic field, and the orange curve is the measured mechanical rotation speed (in RPM) of the rotor shaft.

The figure illustrates the recorded Modbus data for vibration RPM (orange curve) and magnetic RPM (blue
curve). The magnetic RPM is driving the vibration RPM (the shaft is the driven part). In the case of an AC
motor (as we have here), the curves will be offset with the Slip Speed of the motor. The Slip Speed provides
a lot of insight about the operation of the machine, and it is therefore extracted as a separate parameter —
see later section. The absolute size of the Slip Speed is related to the loading of the machine, and the
fluctuation of the vibration RPM is related to liquid homogeneity and pump clogging.

With a time resolution of one second, even small operation events are captured by the RPM parameter, like
the short reverse rotation of a pump during startup, see Figure 9.

Pump Rotation Speed
T

1500 [~ ! ! ! ! .

1000 — =

500 — —

RPM

-500 — —

-1000 = 1 1 1 1 1 1 1 \ 1 1 .

14:27 14:28 14:29 14:30 14:31 14:32 14:33 14:34 14:35 14:36 14:37 14:38
Time

Figure 9: Measured rotation speed for a pump, with a short reverse rotation at upstart.
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6. Slip Speed

In theory, the Slip Speed is defined as the difference between magnetic RPM and the vibration RPM.

However, this introduces some large glitches in the start/stop process, where the magnetic RPM might be
3.000 RPM and the vibration RPM is small, as the machine is ramping up. To counteract these cases, the
calculated Slip Speed parameter is obtained by median filtering the RPM difference.

Slip Speed Trace
I

18.5 T T

14.5 - _

| | | | | | | |
14
15:40 15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25

Time

Figure 10: Measured slip speed, using a median filtering.

The Slip speed can be separated into an DC part (mean of the slip speed) and an AC part (slip speed with
mean removed). The slip speed DC is a low noise version of the slip speed and are related to the loading of
the motor - this parameter is stated as Slip Speed on the Modbus. The slip speed AC is the noise on the
original slip speed and is
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related to inhomogeneous of the pumped liquid. The slip speed AC parameter can be access from the
development part of the Modbus address space.

)

. | ; :
Machine Rotation Direction

7. Rotation Direction

Rotation speed, measured in RPM, is a signed number, where positive RPM indicates clockwise rotation
(CW) and negative RPM indicates counter clockwise (CCW) rotation. The sign of the RPM indicates the
actual rotation direction of the motor and is measured as a separate parameter.

Rotation direction is a fundamental parameter for rotating machinery, and therefore this value is indicated
on the sensor front-end with a dedicated LED: Green indicates clockwise rotation (CW), Red indicates
counterclockwise (CCW) rotation, and NO LIGHT indicates no rotation (N). See Figure 11.

The rotation convention is “drive to

driven”, where the standing behind
the motor in the drive-end define
the rotation direction. If another
convention is used, the definition
can be reversed using a specific

@ ClockWise rotation (CW)
@ Counter ClockWise rotation (CCW)
(O No rotation (N)

setup register address on the
Modbus.

(Clockwise Rotation)

Rotation direction is an important
parameter, as rotation direction can
be mistakenly switched after a
machine service, if the power
cables are incorrectly reconnected

ccw

(Counter Clockwise rotation)

by mistake. Numerous real-life Figure 11: A LED on the sensor front indicates the actual motor rotation direction.
cases exist with sewage pumps,

that have been operating for years with wrong rotation direction, without anybody has noticed anything,
other with the result of lower performance (can be reduced with up to 50-60%).

Page | 12



White Paper EWA sensors for condition monitoring on rotating machinery -—s ensors

Early Warning Analytics

The Rotation Direction parameters can be accessed as a dedicated Modbus parameter, being updated every
second. The Modbus parameter value 1 indicate clockwise rotation (CW), the value 2 indicates
counterclockwise (CCW) rotation, and the value 0 indicate no rotation (N). See Figure 12.

Pump Rotation Direction CW(1), CCW(2) or N(3)
T

2 T | T T T T

15— -

Direction
o
]

2 | l | | ] L | | ] L
14:27 14:28 14:29 14:30 14:31 14:32 14:33 14:34 14:35 14:36 14:37 14:38
Time

Figure 12: Monitoring of machine rotation direction.

” w

“0” indicates “pump not running”, “1” indicates “pump running clockwise”, and “2” indicates “pump running counterclockwise”.

Data illustrate a reverse rotation at pump startup, to avoid or minimize eventual impeller clogging.

The rotation direction algorithm has two EWA patents pending.
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8. Start/Stop

One of several additional process insight parameters that can be derived from a robust RPM algorithm is the
start/stop count. The Start/Stop algorithm counts the shift from zero to non-zero RPM, both as the number
of start/stop events within the last 24-hour time frame and as a total accumulated count for the period
since the sensor was installed.

Last 24 hourse Start/Stop counter
€0 T T T

50 |- A M u ot

0 g, . 7 v b, P T/
e T, P Y 7 e
" X y

s

Count
w
o
T
i
-~
|

18.12 19.12 20.12 2112 2212 23.12 2412 2512 26.12
Time

Total Start/Stop counter
300 T T

18.12 19.12 20.12 21.12 2212 23.12 24.12 25.12 26.12
Time

Figure 13: The upper plot illustrates start/stop counts, where each plotted value is measured for a 24-hours operation period. The
lower plot illustrates the measured number of total start/stops (accumulated value), since the sensor was installed.
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9. Operation Time

The operation time of the machine is another parameter derived from the RPM algorithm - measuring the
operation time with a RPM larger than zero. The operation time is measured both as the operation time for
the last 24-hour time frame, and as a total accumulated operation time for the machine, see Figure 14.

Daily Operation Time

Pump 1
20 — N Pump 2
AN
/ N\
w 15— /" \
3 / \
T ok va b
5 —
0 1 I
18.12 19.12 20.12 2112 2212 23.12 2412 25.12 26.12
Date

0 Total Operation Time

—,_,_, Pump 1 [

30 —

20

Hours

18.12 19.12 2012 2112 2212 2312 2412 2512 2612
Date

Figure 14: Upper plot illustrates the daily operation time for a period of 8 days, for two redundant pumps. The lower plot illustrates the
total operation time of the two redundant pumps since the sensors were installed on the machines.
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10.Unbalance

The effect from a mass unbalance in a rotating system is a centrifugal force, that is increasing with the
square of the rotation speed and with the actual amount of mass unbalance.

It manifests itself in the vibration spectrum in the form of an energy component at a frequency
corresponding to the rotation frequency of the shaft.

Clockwise Rotation

Machine Unbalance

COG (Center of Gravity)
\ R
‘ COR (Center of Rotation)

Figure 15: lllustration of unbalance mass (m) on a motor, as the center of gravity (COG) is not similar as the center of
rotation (COR).
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Vibration Velocity Spectra

--1---Unbalance level

Level mm/s

|

RPM Frequency

Figure 16: Measurement of the unbalance level, as the high of the 1X peak in the frequency spectrum.

The measured unbalance level depends on the actual sensor mounting position, because structural mobility
might either attenuate or amplify the measured unbalance level, depending on the machine rotation
frequency.

Unbalance is measured using acceleration sensor measurement (mm/s?) and converted to velocity (mm/s),
to reduce frequency dependency. Because the unbalance level is measured every second, the EWA sensor
captures both short start-stops and longtime operations.

Unbalance Trace
16 T T T T | T T

08 -

Level [mm/s]

06 [~

04

02

A .

0
06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time

Figure 17: Plot of measured values for pump unbalance over a four-day period, with monitored data in a 1 sec. resolution.
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11.Vibration RMS

The classic measure of vibration level is the corresponding Root Mean Square (RMS) value, as this is the
“effective value” of a signal with a dynamic nature.

One can say that it is the most popular numeric value describing average “vibration level” of a certain
machine. On the other hand, it does not provide much insight into the source of the vibration.

The Root element indicates calculating (in the last step) a square root, the second element Mean indicates
mean value and the third Square indicates that each value of the signal is squared, see Figure 18.

Root Mean Square

Figure 18: Calculation of the Vibration RMS.

The sequence of operation is inverted relative to consecutive letters in the RMS abbreviation.

An RMS value is also known as the effective value and is defined in terms of the equivalent heating effect of
direct current. The RMS value of a sinusoidal voltage (or any time-varying voltage) is equivalent to the value
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of a dc voltage that causes an equal amount of heat - as illustrated in the chapter figure above. For a
sinewave with amplitude A, the corresponding RMS level is simply A/1.41.

The ISO standard ISO-20816 states that the vibration signal must be measured “in a broad frequency range
reaching from at least 10Hz to 1.000Hz".

The ANSI standard states that “The unfiltered root-mean-squared (RMS) vibration reading shall be recorded
at the top motor bearing location”.

To be able to compare measurements with severity charts, it is important to align specifications regarding
filtering, sensor position etc. Examples of characteristics are stated in the following Figure 19.

ISO'ZOB 16 HI Submersible Pump Tests — 2017
ANSI/HI11.6-2017

9

™
[ L7

Qutlet elbow mounted pump =

= ~ |

1=

Floor-mounted pump

002 o7

InchfSRMS mm/sRNS

rigid flexible rigid flexible rigid flexible rigid flexible

Vibration mm/s RMS - maximum unfiltered

pumps < 15 kKW
radial, axial. mixed flow 15kW <P 5300 kW 300 kW < P< 50 MW 4

1 10 100 1000

motors -
Feommetssismn semmat Pouer (kW) at test condition For pumps wih single-vans
impellers, increase these limits
i)

Integrated driver external driver

8 i llowabi llowabl i d Figure 11.6.9.4a — Vibration limits (metric units)

Figure 19: Left picture is from the ISO-20816 standard. Right plot is from ANSI/HI 11.6-2017 standard.

It should be noted, from using Parseval’s Theorem, that the RMS value can both be calculated from the
vibration time waveform and from the corresponding Vibration spectra.

Level Level

Xq X7 I
@ X3 MS Value %ﬂ
] v X3 X,
- 2 X 34| ¥,
E\/\ ,"5/\/\ /\/\ , | PUT TNE /\
= ./ ./ Ti;1e 5 /'/ \X7 ¥ \/
g % e 5 NCay N
E Xy L E

6
Frequency

Figure 20: How the EWA sensor are calculating the Vibration RMS value.

The EWA sensor algorithm for Vibration RMS calculates the value as RMS value of the bandpass filtered (10-
1.000Hz) velocity spectra with four averages, following the recommendation from ISO-20816.
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Another signal metric closely related to the RMS is the Crest Factor or Peak Factor. The Crest factor is a
dimensionless ratio used to characterize a waveform. The term defines the ratio between the Peak values
(either positive or negative) of a waveform to its RMS value, and is a measure of how far the waveform
deviates from its average value:

Crest Factor = Peak / RMS

-------------------------------------------- Peak Level

------------------------------------ I- -RMS Level

Figure 22: lllustration of the Crest Factor, relating peak and RMS levels into
one performance parameter.

When the Crest Factor increases, it indicates that the waveform is becoming more peaked, and it is used in
many applications to indicate a possible failure. As a peak detector, the Crest Factor is more sensitive than
the RMS value, as indicated in the following case, involving a defect spring in a non-return valve in a
pumping station:

Vibration RMS
25 T T
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| | | | | | | [ |
0

13:00 1310 1320 13330 1340 1350 14:00 1410 1420 14:30 1440 1450 15:00 1510 1520 15:30 1540 1550 16:00 16:10 16:20 16:30
Time

-
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Figure 21: lllustration of corresponding measurement of Vibration RMS and Vibration Crest Factor, for an application with a non-
return valve with a broken spring. The broken spring has been exchanged at 14:40.

The actual valve is a non-return valve from AVK:

“The spring tension ensures fast and gentle closing which prevents water hammer. If a pump stops and the
forward flow reverses back down the line towards the pump, before the check valve has fully closed, the
flow will force the valve door to slam onto its seat. This scenario can almost instantaneously stop the
reverse flow and it is this instantaneous stoppage which results in pipeline water hammer. This can produce
loud hammer noises which is not the noise of the valve coming into its seated position but is the stretching
of the pipe under these conditions.”

1 AVK UK, ”“An Introduction to Non-Return Valves and the Importance of Correct Selection”.
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g

Figure 23: Pictures from an application. Picture to the left illustrates the broken non-return valve spring, and the
picture to the right shows the valve with a new inserted spring.

Besides RMS and Crest Factor, the EWA sensor also calculates signal metrics like Sample Standard deviation,
Kurtosis, and Skewness.
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12.False Brinelling

Forcing a machinery to vibrate, while it is not operating, can be very harmful to machine parts like shaft
seals and bearings. These vibration impacts can originate from transportation to customers, but they can
also come from surrounding operating machinery after installed at customer site.

When the machine is installed, the vibration impacting a machine will come from two sources: primarily
impact from self-induced vibration during operation, and secondary impact from surrounding machinery

while the machine itself is not operating. T,

-

When talking of bearing and bearing damage, this type of damaging
vibration has been named “False Brinelling” in the literature. When a
machine with ball bearing is in operation, the bearing balls are
rotating in the race ways, and the loading from the shaft + vibration
is distributed over the surface of the race ways. But when the
machine bearing is not operating, the balls are in a fixed position,
and all load + vibration will impact the bearing race area on a limited Figure 24: A damaged bearing, due toalse
number of points (humber of balls). brinelling.

The damage from false brinelling can visually be inspected by
disassembling the bearing. It has a distinguished pattern - see Figure 24.
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The EWA sensor measures the level of False Brinelling on a machine as a ratio between the received
vibration energy while the machine is not operating (Estopped) cOmpared to the total received vibration
energy (EStopped+ ERunning):

EStopped

False Brinelling = -100%

EStopped + ERunning

The False Brinelling Ratio is calculated on a 24-hour basis. From the RPM parameters, the sensor knows
when the motor is running and when it is stopped. The principle can be seen from the figure below.
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Figure 25: Upper plot illustrates the pump rotation speed. The middle plot illustrates the corresponding measured Vibration RMS.
Bottom plot illustrates the calculated value for False Brinelling (False Brinelling ratio), plotted for a time-period of 28 days.

The top graph illustrates the measured RPM from an installation with two pumps. The pumps are operating
in an alternating mode, where each pump starts with a short reverse rotation. The second graph illustrates
the corresponding measured Vibration RMS level for the same time-period as shown in top graph. By
inspecting the first operation cycle of pump 1, a considerable level of vibration is transferred to the non-
running pump 2. The same observation can be seen during the first operation cycle of pump 2. For this
installation, the False Brinelling ratio is up to 39% for pump 1 and 50% for pump 2.

Vibrations are often transferred between machines through stiff piping or coupled foundation.

General Bearing Fault Detection algorithm will first detect a bearing defect, when the bearing has become
damaged, but the False Brinelling algorithm will detect an installation issue from day one of operation, and
proper intervention can be initiated to prevent bearing damage. It is a measure of installation quality.

From a machine manufacture point of view, it is a strong tool for root-cause-analysis in warranty cases with
premature bearing break down.
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A last illustration of the False Brinelling problem is from a pumping station with two 37kW pumps installed.

RPM=0 =» Pump not operating
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Figure 26: Monitoring data from a real application. Upper figure illustrates motor RPM and the lower plot illustrates the
corresponding Vibration RMS level. A time interval has been highlighted where the machine is not operating, but it is vibrating
considerable. From the Vibration RMS data, the vibration level is 2.6 mm/s while operating and 13 mm/s while not operating.

In this case, vibration from a second running pump provides a vibration contribution 5x larger, compared to when the pump is

running itself.

The case in Figure 26 corresponds to a False Brinelling factor of 82% for a 24-hour period. The root cause

could be a soft foundation, combined with gyro stabilization during normal operation.

The False Brinelling algorithm has an EWA patent.
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13. Cavitation

One of the classical issues with pump systems is Cavitation. It is a formation of vapor bubbles within a liquid
at low-pressure regions in the machine, that occurs in places where the liquid has been accelerated to high
velocities, as seen in the operation of centrifugal pumps, water turbines, and marine propellers.

Cavitation is undesirable because it produces extensive erosion of the rotating blades, additional noise from
the resultant knocking and vibrations, and a significant reduction of efficiency, because it distorts the flow
pattern and creates fluctuations of pump speed. It’s a symptom of insufficient net positive suction head.

plocal > pvapour plocal > pvapour
N "4 )

—) o —

(\

Collapsing bubble

Figure 27: lllustration of vapor bubbles in a pump system, showing the development of cavitation in the pump impeller.
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To some extent, a small level of harmless cavitation is always present in pump system. When cavitation is
measurable using vibration analysis, it is a sign of erosion of the rotating blades, and service intervention

are needed.
Some of the known tell-tale signs of pump cavitation are:
* Random bursts of energy — separated with 1-3 seconds.
* Vibration level for axial direction > radial direction (lower axial stiffness).
* Sounds like “marbles” or “gravel” are passing through the pump.
* Unstable flow and fluctuations of pump speed.
The EWA sensor Cavitation algorithm is based on a perceptual approach, to capture the modulation level of

the random bursts of high frequency energy, that can be heard standing next to a cavitating pump. It is not
the high frequency vibration energy, but the random bursts of high frequency energy that signal cavitation.

The level of cavitation is estimated as a path length over 10 seconds — illustrated as a blue curve in the
following figure for both a cavitation case, and a non-cavitation case.

Random bursts of energy indicative of Cavitation

Energy

.
| A x I W U\\f

Time

No random bursts of energy

Energy

[T R RTTTR o T Al 4 .

Time

Figure 28: Top figure shows the energy content when cavitation occurs. The bottom
curve illustrates the energy content when no cavitation is present.

An initial baseline level of this path length is established during the baseline initialization period, and used
for normalization of both the cavitation parameter, baseline and baseline initialization level, and values are

transmitted on the Modbus.
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To illustrate the path length approach for a real-life application, measurement on a 30kW wastewater pump
is used. Below, normal pump operation for 5-minute is followed with a 30-minute cavitation period (inlet
pressure reduced), and again followed with a 5-minute of normal operation period without any cavitation,
see Figure 29.
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Figure 29: Cavitation occurs at 9:38 and is present until 10:07.

The feature gain factor, defined as the difference between normal mean value and cavitation mean value, is
32x for this path approach for cavitation detection, see Figure 29.

To compare the outcome of the Cavitation algorithm to other parameters like the Vibration RMS and
Unbalance, the Vibration RMS and Unbalance parameter data monitored during a cavitation period are
plotted in the following two graphs, in Figure 30. The feature gain factor for Vibration RMS and Unbalance is
respectively 1.24 and 1.25.
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Figure 30: Monitored parameters for Vibration RMS and Unbalance, on the time when cavitation occurs.
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Bearing Fault Detection

14. Bearing Fault detection

Bearings are key machine components in any rotation machinery, and under normal operation they just
produce a low level of vibration of a random nature. When a fault is developing inside the bearing, the
bearing’s vibration pattern changes and the overall vibration level increases.

In the case of an initial point damage (like a crack), the vibration pattern shifts from a low-level random
nature to a higher level of periodic nature. Every time a ball role over a crack, a high vibration sound is
produced, and the impact frequency of the crack is proportional to the shaft RPM.

Four different impact frequencies are produced dependent on the location of the crack — on the outer race
(Ball Pass Frequency Outer race, BPFO), inner race (Ball Pass Frequency Inner race, BPFI), balls (Ball Spin
Frequency, BSF) or cage (Fundamental Train Frequency, FTF) — also known as the Characteristic Defect
Frequencies (CDF). Under normal working condition, a bearing should not produce its CDF, so the present of
one of these frequencies in the vibration signal is a strong indicator of a bearing issue.

The CDF are property of the bearing geometry, rotational speed, and number of rolling elements and are
easily calculated frequencies (noted Q), as shown in the calculations in Figure 31 below.
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Figure 31: Calculations for the four fundamental Characteristic Defect Frequencies (CDF).
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To make the CDF independent of the shaft RPM, bearing manufactures often normalize the four
fundamental frequencies with the shaft rotation speed (Xfactor=CDF/RPM) in the datasheet. When a given
Xfactor has been determined from a vibration recording, the corresponding fault can be identified from
bearing manufactures data sheet. A bearing like the SKF6308 bearing has the following Xfactor valuess:
FTF=0.384, BPFI=4.92, BPFO=3.07 and BSF=4.08, all independent of the shaft rotation speed.

In practical cases, a fault on a ball will often hit both inner and outer race during rotation, and thereby
produces a 2*BSF frequency.

However, a challenge using the CDF approach for bearing fault detection in real life is, that the actual
bearing data in an installation often is unknown. The nameplate might state DE=6308 (bearing number for
Drive End), but it only guarantees the external geometry for the installation, but CDF is related to the
internal geometry of the bearing. Manufactures may use different numbers of balls for the same bearing
number, and thereby having different CDF values for the same bearing number.

6308 FAG Deep Groove Bearing - 40 6308 QBL Deep Groove Bearing - 6308 NSK Deep Groove Bearing - 6308 KOYO Deep Groove Bearing - 6308 2Z C3 SKF Deep Groove
x 90 x 23mm 40 x 90 x 23mm 40 x 90 x 23mm 40 x 90 x 23mm Bearing - 40 x 90 x 23mm

Figure 32: A bearing like the 6308 is offered by all major bearing companies.

Pump and motor manufactures often do not have traceability on bearing brands used in the machine
production, but only the bearing number, and after the first service overhauling, nobody knows which
brand of bearings being installed in the machine.

It should be noted that one very important property of bearing’s Xfactors are, that they are not integer
multiples of shaft rotational speed. This characteristic allows us to suspect a potential bearing problem,
even if the bearing type is unknown. If the vibration data contains a non-synchronous vibration above the
RPM (like 3.18X), or sub-synchronous vibration below the RPM (like 0.4X), it is highly likely related to the
bearings, as no other machine component will produce that signature. It will tell us about a bearing issue,
but it will not tell us whether the bearing problem is within the inner or outer race of the DE or NDE bearing
(but this is often of no concern — the bearing will be identified during overhauling/service and replaced).

Every time a ball role over a crack, it will ping the impulse response of the mechanical resonance structure
of the bearing. This means, that the vibration signal will contain a periodic part (time-period T) related to
this crack, and the energy (E) of the impulse response will be related to the size of the crack, and thereby
the severity of the fault. The impact frequency is the number of impact per second (1/T) — and this is given
by the CDF.

e Impact frequency = 1/T = defect bearing part (inner/outer/ball/case)
e |mpact energy =A = defect severity
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A periodic signal will produce a line-spectrum, where the distance between the harmonics will be the
impact frequency:

Time Waveform

Frequency Spectra

Al

1/T

Figure 33: lllustration of the time period T in the Time Waveform, and the impact frequency 1/T in the
Frequency Spectra.

The frequency content of the impulse response (bearing transfer function) does not contain information in
relation to the actual bearing fault. Its content might start in the ultrasonic range and move down in
frequency as the bearing fault start to evolve. The information in relation to bearing fault severity is
contained in the impact frequency and its energy content.

From a signal analytic point of view, the vibration signal from a bearing crack is generated by a convolution
between the impulse response function h(t) of the bearing and a pulse-train function d(t) from the crack.
The information we seek is in the pulse-train function, and not in the impulse response function, so we
need to separate the two functions again — to do a deconvolution of the vibration signal. A classical
approach for deconvolution is the Cepstral transformation. It will separate the impulse response and the
pulse-train into two non-overlapping regions, and thereby make it easy to inspect the pulse-train function.

The Cepstral transformation is simply a Power Spectrum of a logarithm Power Spectrum, and the procedure
is illustrated in the following Figure 34.

In general, CDF should not be presented in a vibration signal, and the bearing severity measure will be zero.
If the Bearing Fault Detection algorithm starts to detect an issue, the corresponding baseline must be
observed to see how the fault develop. But when a non-zero severity measure is detected, it indicates a
bearing issue and a coming bearing breakdown.
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Cepstral Analysis Framework
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Figure 34: lllustration of an impulse signal in time domain, and the responding signals in power spectrum, log power spectrum and
in Cepstrum.

The EWA sensor’s Bearing Fault Detection algorithm analyzes the vibration signal for dominant non/sub
synchronous contributions using Cepstral Analysis. When the same impact frequency is found in 10
consecutive measurements, the corresponding energy level and Xfactor are logged as a severity measure
for the Bearing Fault Detection. The principle is illustrated in Figure 35 below.

IIUII“H“ “hiﬂllmmﬂ

Vibration Signa _
U ﬁquw“m 2 L
g |7 {(log(IF{f (DN}
‘ Bearing Xfactor
Cepstral Analysis ' x/y >
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Figure 35: The actual bearing vibration level is found from a Cepstral analysis of the vibration signal.
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As the level of the bearing fault energy depends on a range of factors (size of machine, distance between
sensor and bearings etc.), the corresponding bearing Modbus parameters (level, baseline and initial
baseline) will be normalized with the initial measured baseline level. The parameter will thereby express the
development of the severity over time, relative to this machine. Levels and Xfactors are maintained for 60
minutes after last detection (end of operation).

The following case illustrates a detected bearing fault issue for a motor with 6308 and 3311 bearings.
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Figure 36: Bearing fault parameters for a case with a defect ball in a SKF6308 bearing.

The Xfactor measured in Figure 36 shows an alternation factor between 4.08 and 8.20 for this installation
(Inspecting the datasheet for the SKF6308 state the BSF=4.078). Faults on bearing balls are known to
produce double impact frequencies, as a point of damage hits both inner and outer race during one
rotation (therefore the monitored Xfactor of 8.20). The core existence of a non-zero Xfactor is a very strong
indicator of a bearing issue, but it might not be a problem. Many old installations will show sign of bearing
wear but can run for many years. But if the severity level is doubled within weeks and cross the warning
level, proactive action should be taking to replace the bearings.
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15. Machine Looseness

The motion of a loose machine mounting bolt in its hole will not be exhibiting a smooth sinusoidal motion
of rocking back and forth, but the signal will be truncated by the sides of the hold, and the corresponding
motion will be something like a squared or chopped sinusoidal. The frequency spectrum will have many
harmonics of the rotation frequency of the shaft (1X).

Mechanical looseness comes in many forms like structural frame looseness, cracked structure pedestal or
improper fit between machine components, all signatured by an increasing number of harmonics in the
vibration spectrum. Examples of looseness signatures are illustrated in the Figure 37.

Looseness: Structural Looseness: Rotating Looseness: Pillow block

1x 2x

Journal Bearing Looseness Bearings: Loose in Housing Bearings: Loose on Shaft

3x

1x 4x

3x 5x
2x A 6x
7x
A

0 1 2 3 4 5 6 7 8 9 10 0123 456 7 8 9 1011121314151617 1819 20 012 3 45 6 7 8 9 10111213 14 1516 17 18 19 20

Figure 37: Signatures for different kind of machine looseness.

An important fact regarding each type of mechanical looseness is, that alone it is not a cause of vibration.
Looseness is a reaction of other problems, like unbalance, misalignment, eccentricity, bearing problems etc.
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Removing each of these problems will often remove the symptoms of looseness, but the issue remains.
Looseness aggravates the situation — mechanical looseness allows much more vibration than would
otherwise occur from these other problems alone.

The generation of harmonic components from sinusoidal stimuli are related to a non-linear relation
between input and out of an electromechanical system — like a loudspeaker.

When a loudspeaker reproduces an audio signal, input signal and output signal should ideally be identical. If
this is not the case, there is signal distortion. The Total Harmonic Distortion (THD) describes how much
influence non-linear distortions have got on an originally sinusoidal alternating signal in the loudspeaker.
With such a distortion, new overtones (also called harmonics) are created. A low THD is often regarded as
an indicator for a good loudspeaker system. The THD metric is a good measure for the harmonics
production, and the analogy between loudspeakers and motors are strait forward — it will provide a good
measure for looseness.

The principle is illustrated in the following:

The Total Harmonic Distortion is a measurement (of the purity of the signal)
of the harmonic distortion in a signal,
as the ratio of the sum of the power of all harmonics
to the power of the fundamental frequency.
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Figure 38: Calculation of the Total Harmonic Distortion (THD) value, at specific frequencies w.

For a looseness application, the THD is only calculated for w = RPM.
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16. Gear Analysis

The main part of rotating machines contains only of a single rotation system, but in application with the
need of speed and power conversion between shafts, multiple rotating systems are introduced using gear or
belt systems.

The EWA sensor algorithm portfolio contains two algorithms for gears: Spur gears (two rotating systems)
and Planetary gears (three rotating systems).

The core parameter for all gears is the vibration level at the Gear Mesh Frequency (GMF). GMF is the
product of the number of teeth on the gear multiplied by the running speed of the gear. It is not a fault
frequency, like the four fundamental bearing frequencies, but a normal presented component in the
vibration signal from a gear, as it is impossible to manufacture perfect gears (teeth profiles, concentricity,
meshing characteristics etc.). When the vibration at 1x GMF and its harmonics are considered excessive,
compared to normal levels or initial baseline levels, an analysis should be carried out to identify the cause
of the problem. This is not only to avoid a breakdown of the gearbox, but it will increase the gear lifetime as
well.

Like bearing data, gear data like tooth count are often not accessible, and only the gear factor is stated -
indirectly via a nominal speed number, impacted by the slip speed.
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For a Spur gear, the gear ratio and the GMF are straightforward and intuitive to calculate, as illustrated in
Figure 39.

Spur Gear

GMF=FA'NA=FB'NB

F N
Ratio = -4
Fy Np

Figure 39: Spur Gear definitions.

Ny is the number of teeth for gear A, and N is the tooth number for gear B.
Fa is the rotating speed of gear A (in RPM or Hz), and Fg is the rotating speed of Gear B (in RPM or Hz).

In the case, that the tooth number is not provided but only the gear ratio, the following algorithm will
search the vibration spectrum for a possible candidate for Ny and Fgpp:

£a g, =g Jour fame
A — Ngear
Ny
= Find fgpp in Vib spectrum
Rgeaf * Find the best estimate of f NA
and thereby N,
— v _ M
B=q Ng
gear
v

Figure 40: Calculation of the spur gear parameters Na and N.

The algorithm involves the following steps:

e The gear tooth size Nyis found by searching the vibration spectra for f;yr candidate, that will fulfil
the following relation F, - Ny = Ryear * fomr, Wwhere F, is the best estimate of F, for the correct
value of Nj.

e The second gear tooth size Ny is found using the gear ratio and Ny.
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The concept of planetary gears is very different from Spur gear. As stated by the authors Arnaudov &
Karaivanov of the book “Planetary Gear Grain” - Planetary gear trains make up an extremely large technical
field. The theory behind them is complex, with many unexpected challenges, while the way they function are
not obvious and easy to understand. Because planetary gear trains have a reputation for being complex and
hard to understand - for some, they are borderline mystical.

When the tooth number for the sun N, and ring gear N,. for a planetary gear are known, the corresponding
gear Ratio and GMF can be directly calculated from the formulas in the following figure:

Planetary Gear

GMF = £ s N
= s N + N,

Rati —1+Nr

atio = N,

Figure 41: Planetary Gear definitions.

But again, these numbers are often difficult to obtain, as most manufactures of motors are sourcing the
gearbox from an external supplier and are only focused on the functionality like gear ratio and not the
number of teeth. In the case, where only the gear ration and the motor RPM (Mg, t0r) is known, the
following algorithm will find the planetary gear tooth numbers, together with the gear rotation frequency,
GMF:
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Figure 42: Planetary Gear calculation of the three individual gear tooth numbers, together with rotation frequencies. Blue example
for a gear ration of 4.28 and the corresponding gear tooth numbers.

The algorithm involves the following steps:

e The Carrier rotation frequency f, is calculated Sun rotation frequency f, and gear ratio.
e The Ring gear tooth size N,is found by searching the vibration spectra for f; candidate, that will

fulfil the following relation f; - N, = Rgear * fomr, Where f. is the best estimate of f; for the correct
value of N,..

e The Sun gear tooth size N is calculated from N,. and the gear ratio.
e The Planet gear tooth size N,, is calculated from the geometric constraint for planetary gears.

e The Planet rotation frequency f, can be found from the three googh sizes and the sun rotation
frequency.

Tracking and trending the GMF vibration level provides a robust measure of the gear box wear. Just to
name an example of the insight, that this algorithm can provide:

A customer was advised to reduce the rotation speed of a gear motor with 33%, from 1500
RPM to 1000 RPM to reduce the energy consumption.

But the corresponding GMF vibration level increased with 200%, as the gear oil was not rated
to the low speed. For this customer, what has been saved in energy, might be lost in the
reduced lifetime of the gear box.

The following “collage” (Figure 43) illustrates the steps to follow, from calculating the gear tooth to the gear
ratio (transmission ratio), and the GMS for the planetary gear.
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Figure 43: Planetary Gear calculations.
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17. Water Hammer detection

Water hammering is a pressure surge created by a rapid change in flow velocity in a pipeline. This
instantaneous change in flow velocity is often created by a sudden valve closure or pump stopping. It is the
same phenomena known from signal transmission lines - an impedance mismatch in a circuit or along a
transmission line will produce a reflection back to the source of the signal.

Water hammer can result from improper valve selection, in-proper valve location, and sometime poor
maintenance practices. Swing check valves are prone to slamming because they rely on reversing flow and
backpressure to push the disc back into the seat. If the reverse flow is forceful (as in a vertical line with flow
upwards), the disc is likely to slam with great deal of force and potential damaging the casket and leading to
leakage.

As Water Hammer is pressure surge of the liquid, it is not directly measurable by the EWA Sensors, as it is
not in contact with the liquid through a pressure cell. But a derived effect in the form of vibration and slip
speed discontinuities can be observed and used as a signature for Water Hammer detection.

An analogy for the motion of the pressure surge can be obtained from a bouncing of a ball. When dropping
a ball to the floor, it will hit the floor with great force, and bounce-up again. The second time, the ball bit
the floor, the force will be reduced due to conversion of initial heat/sound/impact energy to the floor and
the bounce-up height will be reduced. After a couple of bounce rounds, the ball will stop bouncing. The
time between impact will also be reduced after each bounce. The bouncing pattern is illustrated in the
following Figure 44.
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Figure 44: lllustration of bouncing pattern as Water Hammer signature.

When a large column of water is instantaneously stopped by a barrier (valve or pump), it will bounce-back
like in the ball analogy. The vibration signature for a Water Hammer is:

o Time T between impacts will decrease with each bounce.
e Impact energy A will decrease with each bounce.

e Signature dataset (T;, A, T, A, +-+) from Water Hammer impacts are the same for different
machine installations.

It is not possible to identify a single vibration pulse as a Water Hammer incident, but multiple comparable
signature datasets are a strong indicator of a Water Hammer problem. The signature dataset will be constraint
by the piping, flow velocity etc., and it will be reproduceable by each Water Hammer impact. The principle
drawing of the time waveform for a Water Hammer case is illustrated in the following Figure 45.

Water Hammer impact

-
-

Level mm/s

Time

Figure 45: Water Hammer impact monitored and illustrated with the time waveform. Each impact is the impulse
response of the pipe + valve + pump construction.

The Water Hammer algorithm will become available in a coming software release.

The Water Hammer algorithm has an EWA patent.
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18. Machine Health

To ensure production quality and continuity, the performance of the machine becomes very important.

The performance can be inspected from both daily Operations Parameters like RPM, Unbalance, Slip
Speed, Cavitation, and from Alarm Parameters like Bearing Fault Detection, and Baseline trending with
warning and alarm level etc.

The daily operation parameters are used to optimize and balance production throughput without harming
the machine, where the alarm parameters are used to detect abnormal level and behaviors (abnormally
detection) and are more seldom in use.

This kind of parameter separation is seen in many contexts like the car dashboard: top dashboard
instrumentation is for daily operation (speed, temperature, fuel level), and the bottom instrumentation are
alarm parameters (check-engine light, Coolant Temperature light, Transmission Temperature). When driving
a car, we inspect the "daily parameters” to insure and follow the expected operation, and we don’t pay
attention to alarm parameters not appearing. But when one of the car alarms appears, it is often a very
serious problem and costly to repair.
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Figure 46: Instrument panel (dashboard) in a car, with operation parameters and alarm parameters.

Vibration analysis is used to monitor the condition of rotating equipment and predict machine issues based
on data trends over time, abnormal frequencies, or the amplitude of the measured vibration.

The first step to a successful vibration analysis is establishing relevant baseline references and alarm levels,
as to help identifying when the machine is operating normally and when there is a fault/operation issue.

Vibration analysts typically use a couple of the following five reference methods to quantity and severity
evaluate a machine installation:

1. Baseline readings from the installation time.

2. Generic severity charts from ISO, ANSI etc.

3. Equipment manufacturer’s recommendation.

4. Statistical Data analysis from a large population of the same type of machinery.

5. Experience.
The EWA sensor is using a baseline approach. In classical vibration analysis, baselines are established by
measuring the vibration of a machine when it is in good condition. The initial vibration levels at the sensor
installation is recorded and used as a reference point for future measurements. By comparing the current
vibration levels to the established baselines, maintenance personnel can identify trends indicating changes
in a machine behavior. This information can be used to predict when a machine is likely to fail, allowing for
proactive maintenance.
A static fixed-value baseline approach has some practical challenges:

* Choosing the correct time to make the baseline measurement (considering machine loads, seasonal
variations over winter and summer etc.). It the baseline is set too low, it will provide false alarm,
and is the baseline set too high, it will make the system blind.

*  Drift of parameters related to aging and normal wear.

* New baselines are required after each machine overhaul and major service.

Regarding warning and alarm levels, it is generally believed that in the absence of other specific information
a doubling of an acceptable vibration level is an indicator of trouble, and a tripling of the level is cause for
major concern. The factor setting of 2 for warning level and a factor of 3 for alarm level are completely
aligned with the levels given by the ISO 20816 generic severity chart.

The principle of using a static Baseline level (B) with a corresponding static warning level (2:B) and static
alarm level (3:B) is illustrated in the following graph in Figure 48.
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Static Baseline and Alarm levels

Static Alarm |—

Parameter Level

Static Baseline
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Figure 48: lllustration of monitoring data (red graph), added a static baseline and static warning and alarm limits.

Parameter levels for Vibration RMS, Unbalance etc. for a new machine will drift over time because of
machine aging and normal wear. With a static setup, a machine parameter can drift into a warning or alarm
situation over a year, even for a machine without any severe faults (just due to normal wear and tear). This
is illustrated below.

Static Baseline and Alarm levels

Static Alarm

M 1

Time

Parameter Level

Figure 47: lllustration of the development in a monitored parameter over time (red graph), due to machine ageing
and wear.

The static baseline is a measure of the parameter level from a new machine. It can be an advantage to
update this level continuously, to counter-act machine wear and to obtain a baseline aligned with the aging
of the machine.

The EWA sensor is based on a Dynamic Baseline approach. The dynamic EWA parameter baseline is
designed as an adaptive filter, that tracks the behavior of the individual sensor parameter, in a rigid and
slow manner. The principle is illustrated in Figure 50 and Figure 49.
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Dynamic Baseline and Alarm levels

Dynamic Alarm

l

Dynamic Baseline

Parameter Level

Time

Figure 50: Illustration of a monitored parameter (red graph) using a dynamic baseline, with corresponding
dynamic warning and dynamic alarm limits.

The dynamic baseline is slow, and it will not adapt to small local variations in the parameters:

Dynamic Baseline and Alarm levels

Dynamic Alarm

Dynamic Baseline

Parameter Level

Time

Figure 49: lllustration of a monitored parameter signal with sudden evidence (red graph), using dynamic baseline
with dynamic warning- and alarm limits.

The advantage of using a dynamic baseline approach, where the baseline is adapting rigid and slowly to the
measured parameter, is a flexible solution for an edge-based standalone sensor. Just to name some points:

* The baseline will adapt to normal machine aging and wear.

* Baseline tracking can be activated at the time of installation, and any deviation related to wrong
timing will slowly be corrected within a week.

* New parameter levels due to a service visit will automatically initiate an adjustment of the baseline.

As a last line of defense, a static Alarm level is defined as four times the baseline. The static alarm (Binitiai) is
generated after 4 hours of machine operation.
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From the above definitions, the EWA sensor operates with 1 warning and 2 alarm levels, defined by:
* Dynamic Warning Level =2-B
*  Dynamic Alarm Level =3-B
*  Static Alarm Level =4 - Binitial

The principle is illustrated in the following figure:

EWA Sensor - Baseline and warning/alarm levels

Static Alarm I—
Dynamic Alarm l—

Parameter Level

m Dynamic Baseline h

Time

Figure 51: Illustration of dynamic baseline and dynamic warning/alarm levels, added a static alarm.

The initial baseline value (Binisal) recorded at the time of installation, can also provide valuable insight and
knowledge about the single parameter relative to its time of installation:

Initial Baseline Value

Parameter Level

Initial Baseline Value

Time

Figure 52: lllustration of the Initial Baseline plotted together with a parameter data, plotted over a certain operation time.
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The EWA Sensors algorithm for Machine Health is founded on the concept of dynamic baseline tracking
with belonging dynamic warning/alarm levels.

When the sensor has just been installed, it has no information regarding normal and high parameter levels,
as this requires:

* information about machine size - is this a 2kW motor or an 25kW motor?

* information about machine wear history - is this a new installation or an old installation?

* information about previous failure history - is the machine already in severe unbalance?

In general, this information is not available for most installations and would be difficult to obtain, as every
machine is different in respect of piping, foundation, application - all are impacting the machine operation.

The EWA sensor is designed as a "plug and play” sensor with no initial setup or application configuration.
The sensor will auto-detect the actual machine orientation (Horizontal or Vertical) and the Motor Pole Pair
number. When all the auto-detected values are regarded as “good”, the sensor will be powered on, and the
parameter baselines will adapt to current monitored parameters values within 12 hours of machine
operation.

The EWA sensor is automatically generating baselines for 8 parameters, see Figure 53 (more parameters will
follow in future):

* Unbalance

* Bearing Fault Detection

* Cavitation

* Temperature

*  Vibration RMS X-axis

* Vibration RMS Y-axis

* Vibration RMS Z-axis

* Gear Mesh Frequency

When a measured parameter crosses any of the three levels for more than 10s, a corresponding flag is
raised at the Machine Health center. The flag is automatically put down again after one hour with no
warning/alarm occurring.
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Figure 53: The EWA Algorithm Portfolio consists of fault parameters with their individual calculated dynamic baseline, and
operation parameters and development parameters without baselines.

The Health Center algorithm will indicate the
highest severity level, both as a status on the
Modbus and indicated on the Alarm LED on
the front of the EWA Sensor, see Figure 54.

After sensor power-on, the sensor will use
around 12 hours to build-up the baselines.
During this time, the Health Center will be
inactivated, as it will not able to make any
assessments without baselines.

(O Health Center not ready

@ Health Centerready — no errors

-‘- Warning

® Alarm

Figure 54: Sensor LED indications for status of the Health Center.
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The graph below illustrates a real-life example for monitored vibration RMS with baseline and alarm /
warning levels:

VibLevel RMS - X axis - Pump 1
] I ] I ] I ] I I I I
VibLevel RMS - X axis
Baseline
10 Dynamic Warning Level |—|
Dynamic Alarm Level
Static Alarm Level
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Date

Figure 55: Baseline calculation for the vibration RMS parameter, for a pump installation. The calculated dynamic warning and alarm
limits are also plotted.

Currently, 8 parameters are tracked with baseline and alarm levels. When a parameter crosses a warning or
alarm level, the Health Status flag for the parameter will be updated with the value 2 (warning) or 3 (alarm).
If the Health Status for a parameter persists for more than 10 seconds, the health status flag will be
transmitted to the Machine Health. The Machine Health algorithm will maintain the Health status for a
period of one hour, after the Health Status flag has been cleared. This illustrated in the following graph:

Machine Health

T T

Vibration RMS X-axis
Vibration RMS Y-axis
Vibration RMS Z-axis ||
Unbalance

Cavitation

Bearing Fault
Temperature

25—

Health level
T
|

IR ey |

0 = Baseline initialization

0
07.03 08.03 09.03 10.03 11.03 12.03

Date

Figure 56: Monitored signal for Machine Health, showing both Normal condition (1=Normal), Warning condition (2=Warning) and

Alarm condition (3=Alarm). When the Machine Health flag has been set, it will keep the Health status for one hour after the flag has
been cleared.

Figure 56 illustrates the Machine Health and the corresponding 8 parameter Health Status. The 8 Health
Status parameters are displayed with an offset, to avoid overlapping graphs. The EWA sensor starts with a

12 hours initialization period to build the baselines. After two days of operation, the bearing algorithm sets
the Health Status flag, to signal a warning issue. This is later upgraded to an alarm issue.

The EWA Health Monitoring and the dynamic approach has an EWA patent pending.
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19. ISO 18436 Compliance

Condition monitoring of rotation machinery has become so mature, that the International Organization for
Standardization (aka ISO) has defined a dedicated certification standard ISO-18436, that specifies
requirements for the training, relevant experience, and examination of personnel performing condition
monitoring and diagnostics of machines using vibration analysis. The standard’s part 2 of this ISO
certification “Vibration condition monitoring and diagnostics” are divided into four classification categories,
from Cat I: Introduction Level to the Cat IV: Advanced Level.

The benefit of a certification standard within condition monitoring is to outline best practice for condition
monitoring for rotation machinery, covering every aspect from sensor design to how to measure and
interpret vibration data. When being in compliance with 1SO-18436, all professionals are “talking the same
language”, and measurement methods are comparable and aligned.

EWA Sensors has selected to build the sensor platform on this huge foundation of knowledge and has
therefore attended all certifications (Cat | to Cat IV) from the three leading certification institutes: Mobius
Institute, Technical Associates of Charlotte and Vibration Institute.

Vibration
@ Institute

Technical Associates
Of Charlotte, P.C.

MOBIUS
INSTITUTE

Figure 57: The three main providers of ISO 18436-2 certifications.
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By following the 12 sections (Cat | to Cat IV from these three institutes) a solid state-of-the-art foundation
has been built, to guide the design of an innovative sensor platform and algorithm portfolio for the EWA
Sensor.

B
MOBIUS INSTITUTE
BOARD OF CERTIFICATION
cartte hot
EVA KUHNE
s metthe experince, ramng 353 examntion requiemests
for conformity to 150 15436-2 95
Board of Certification 1 VIBRATION ANALYST: CATEGORY IV
Certifies That B 1 it
Eva Kihne ‘ - o
has successfully completed the requirements for M e b o b,
VIBRATION ANALYST: ISO CATEGORY IV . o T e
. EVA KOMNE e

ottt 5 o

lined - Zv——,»—u.uo
2N X 7 R § X § R Ittt Bowd of Cort et

X Xafe s

Figure 58: The EWA Sensors has achieved I1SO 18436-2 certifications CAT IV from Technical Associates and Mobius Institute, and
CAT Ill from Vibration Institute.

Certifind i accordance with 1SO 18436-2

EVA KUHNE
Certified Vibration Analyst 1O Category IV

Figure 59: Route-based monitoring on a dry-installed wastewater pump.
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20. Remote Firmware Upgrade

The benefit of edge processing is fast and local processing of data, as the algorithms are running in a local
target.

To keep the algorithm portfolio of an EWA sensor up-to-date, and enable remote sensor updating with new
parameters, the EWA sensor firmware can be updated over the Modbus.
Currently, there are two approaches for sensor firmware updating:

* PCsoftware from EWA Sensors, connecting the sensor Modbus network to a PC using a USB
converter, and updating sensors using the EWA Bootloader PC program.

Individual EWA sensors on the network can be addressed and updated — one at a time. Details can
be found in the pdf document EWA PC Bootloader Use Guide.

* Customer implementation of the update procedure in gateway, PLC or SCADA — following the EWA
software guide for updating the sensor. Details can be found in the pdf document EWA Bootloader
Protocol Specification.

Both approached are supported by two pdf documents.

Firmware updating of an EWA sensor takes approximately 55 sec. per sensor. The following figure illustrates
a firmware update using the PC software. The current version is through a PowerShell window or a windows
command prompt, but a pure Window version will soon be available.
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PS C:\Users\Public\EWA> .\EWA_Bootloader_v1l.8.exe 1 COM16 "

L= == =
1 =N = W=
| R (e

welcome to the EwWA Bootloader PC application.

To successfully start the bootloader, please provide slave address, COM port number and drag and drop the binary file.
Current version v1.8

Example: 3 com4 "path.bin"

In case of using scan feature, make sure to provide COM port like e.g. -scan com4

For more information, please refer to the EWA PC Bootloader user guide.

Arguments passed.
Slave address : Ox 1

: \\.\com16

: EWA_Sensor_FW.bin
File size: 217096 bit
—Start
Device is already in DFU mode with slave id provided by user
Deleting sectors
Sectors are deleted
sending packets
Progress 0.10
Progress 1
Progress 2
Progress 3.
Progress 4.
Progress 5
Progress 6
Progress 7
Progress 8
Progress

Progress
Progress
Progress
Progress
Progress

Progress

Progress

Progress i

Finished successfully!
DFU total time: 55 s

PS C:\Users\Public\EwWA> _

Figure 60: Firmware updating, using the EWA PC bootloader software.
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21. Raw Data access

The EWA sensor is an Edge Device, where all signal analytic are performed by an embedded powerful
microcontroller, and the resulting parameters are accessible using Modbus.

Moving all raw sensor data to a cloud platform will be both technical challenging (continuously streaming of
6 channels with 32kHz bandwidth and 16bits data) and expensive in data cost. An edge solution is a more
elegant and green solution, as data stay at the source and are processed locally by a low-power processing
unit. The technical requirement for communicating with an edge solution is easily obtained through the
Modbus fieldbus (as used in many customer installations).

In three cases, the access to raw data become mandatory, also for an edge device like the EWA sensor:
* Foundation for developing new sensor algorithms and parameters.
* Manual data inspection.

e Aland ML support

To fulfill this need, the EWA sensor is providing continuous access to 2 seconds of both vibration and
magnetic raw data with a sampling frequency of 2kHz. Five Modbus registers are used for this: two registers
for a floating-point vibration sample, two registers for a floating-point magnetic sample and one register for
indexing. A coherent sample set for vibration, magnetic and index are obtained during every block transfer
of the parameter list, and a complete 2 sec. data set are thereby obtained approximately every hour, at no
extra cost.

The indexing is included with each Modbus reading. In many cases, the raw data will be an extra bonus, to
be used when going back to inspect historical data. To decrease the time to retrieve a complete dataset, a
dedicated block transfer only of the five Modbus registers with raw data can be made - but this will block
for the normally communication on the remaining Modbus protocol.
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The retrieval of raw data is illustrated in the following graph. The first plot shows the consecutive reading of
the parameters for a duration of 24 hours. This track contains approximately 20 complete raw data sets.
Subsequently, the raw data for the first running pump operation cycle at 8am is extracted at the bottom
plot.
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Figure 61: Upper plot shows associated values of indexing, raw vibration data and raw magnetic field data for a 24-hour operation period.
The lower plot is an extraction of 2 seconds of data from the upper plot, for a pump running sequence started at 8am.

The EWA sensor is a multi-rate platform using sampling frequencies of 2kHz, 8kHz and 32kHz. Currently, the
raw data access is provided to the 2kHz domain, but access can easily be extended to both 8kHz and 32kHz,
if needed.
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22. Customized algorithm design.

The EWA sensor is a powerful edge device with an internal 480MHz Cortex-M7 microcontroller for signal
analytics. The current load of the microcontroller is only 50%, so the platform is capable of running more
algorithms.

EWA Sensors are therefore offering customers to develop customized solutions, tailor-made to specific
machinery and applications, that are not covered by the current algorithm portfolio. The EWA sensor is a
multi-rate platform with sensor data in both 2kHz, 8kHz and 32kHz format, for both 3D vibration and 3D
magnetic signals.
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23. Technical sensor documentation.

The EWA sensor is documented and supported in following technical documents:

1) One-Pager 5) PCBootloader Use Guide

2) Datasheet 6) Bootloader Protocol Specification

3) User Manual 7) Whitepaper, “EWA sensors for Condition
4) Modbus Interfacing Guide Monitoring on Rotating Machinery”

User Manual Modbus Interfacing Guide
For EWA For EWA sensor model E1

sensor model E1

PC Bootloader Use Guide Bootloader Protocol Specification
For EWA sensor model E1 For EWA sensor model EY

Figure 62: Technical documentation, for the EWA sensor.
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ABOUT EWA Sensors:

EWA Sensors is a Danish company, developing and manufacturing edge-based sensors for
condition monitoring and predictive maintenance of rotating machinery. EWA Sensors core
capabilities lay in high-quality sensor signals and in advanced algorithm design.

Algorithms, both for edge-based and cloud-based solutions, are not better than the data
quality they are fed with. EWA has focus on the sensor monitoring circuits, to secure high-
quality data and the required signal bandwidth for algorithm development.

All EWA signal processing and algorithm designs are based on signature design in time
domain and in frequency domain. Furthermore, algorithm design use combination of
signals in one-, two- or three dimensions (x-, y- and z-dimension), to secure robust and
strong parameter estimation, and for new signatures and parameter designs for the future.

On top of the algorithm design is added an Early Warning Analytics (EWA) layer, making a
clear and easy to understand evaluation on each single sensor parameter.
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