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Preword 

The condition monitoring and predictive maintenance communities are a very active research and 

development area, with +150 IIoT solutions being offered for industrial applications. Common 

denominators are powerful cloud AI and ML capabilities combined with non-realtime data access.  

The EWA sensor is designed with a different mindset, and the purpose of the current Whitepaper is to 

address the following four differentiators: 

1. Machine condition monitoring can be done without Artificial Intelligence (AI) and Machine Learning 

(ML) algorithms because the main part of all machine failure modes is already well described by 

ISO-18436. Knowing the fault signatures and understanding the physics of the machine have prone 

the way to developing an autonomous sensor platform like the EWA sensor. 

In general, when physical relations are known, there is no need for AI modeling - like the FFT 

algorithm for frequency analysis, it will outperform any AI system regarding precision and speed - 

anytime. But for unknown and complicated physical relations, AI and ML might be the only 

solutions possible.   

The EWA sensor can with benefit be used as a preprocessing unit for larger AI/ML cloud-based 

Condition Monitoring Solutions (CMS), as the sensor provides access to both high-level 

performance parameters and low-level raw data. 

2. Combining Vibration Signature Analysis and Motor Current Signature Analysis will provide the 

insight and robustness required for industrial applications. Sensor solutions based on vibration 

measurement only, are very sensitive to contributions from surrounding operating machinery. 

3. Plug and play – no setup is required for the EWA Sensor.  

The orientation of the installation (horizontal/vertical) is auto-detected, the pole pair size of the 

motor (1,2 or 3 pole pairs) is auto-detected, bearing faults are detected without requiring the 

bearing type number, motor rotation speed and rotation direction is auto-detected, fixed valued 

alarm levels are not needed, as Machine Health levels are adaptive tracking machine aging and 

wear. 

4. As an edge device with real-time analytics of 3D vibration signals and 3D magnetic signals, the EWA 

Sensor performs a complete analysis of all parameters every second. This high-resolution parameter 

set is used internal by the Machine Health center for baseline tracking and can be accessed 

randomly by customers using Modbus interface. 

The EWA sensor is offered as a retrofit sensor solution, but the autonomous edge platform can easily be 

built into machines from factory. This will leverage machines like pumps from ”just” being actuators to 

become actually intelligent devices, and this is expected to become an important business differentiator for 

machine manufacturers in the near future.   
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1. Motivation 

Rotation machinery has been the driving horse behind the Fourth Industrial Revolution (Industry 4.0), with 

focus on system uptime and process optimization. Critical machines have always been nursed daily by 

machine service operators to ensure proper lubrication, alignment, and general working conditions.  

Machine maintenance has been based on experience of the service staff, using simple tools like “Engine 

Defect Finder”, which is a stethoscope-like instrument used for the early detection of bearing and machine 

damage – see the picture of top of this section (”Original Maschinen und Motoren Defekt-Sucher” from the 

company Apparatebau C. Richter, 1920). This manual machine inspection tool was both expensive and 

difficult to scale, as the maintenance expertise was built up over many years by individual machine service 

operators.   

100 years after the development of the Engine Defect Finder instrument, machine inspection has been 

taken over by scalable IoT solutions, offering a wide portfolio of condition monitoring solutions. Today, 

machine condition monitoring is a range of techniques and technologies used to monitor the condition and 

performance of various machine parts within the machine.  

These IoT solutions primarily focus on extracting parameters to identifying significant changes 

(abnormalities) that may indicate impending failures, as the collected data is analyzed to identify patterns or 

trends that can indicate wear, damage, or other machine related issues. This offering is categorized as 

Predictive Maintenance and serves to increase system uptime and reduce unnecessary maintenance 

expenses. But predictive maintenance is only one part of the complete picture, that a condition monitoring 

sensor can provide for the end user. Fortunately - the main part of the machine park will run for years 

without any breakdown, so predictive maintenance becomes like an insurance (fear management) - you 

don’t want to use it, and you don’t want to live without it. The second part of the complete picture is Daily 

Operation Parameters. This offering provides valuable insights into machine operation and means for 

process optimization - just to name three examples: 
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• Energy optimization: saving energy by reducing motor rpm without harming or damaging machine 

components. E.g. the gear box in a mixer will wear faster, if the oil is not rated to low speed 

operation, which can be observed from the Gear Mesh Frequency vibration level. 
 

• Resonance detection: observing vibration level for different motor rpm. 
 

• Process control:  avoid cavitation in some process facilities by reducing rpm, adjusting air diffusers 

in a treatment plant by observing the mixer 3D vibration level. Too little air and the chemistry will 

not work, but too much air will go behind the impeller, and the non-uniform load will break the 

mixer of the tower, leading to a total breakdown. 

The third part of the complete picture is EWA sensor data to support Artificial Intelligence and Machine 

Learning. Continuous streaming of multi-dimensional, high resolution raw sensor data to a cloud platform is 

neither a green technology nor technical feasible. Raw data stays at the source and information are 

communicated to the cloud, where new insight is created by datamining across many installations and data 

sources. As a preprocessing frontend for AI and ML platforms, the EWA sensor data can boost the 

performance significantly. 

By exploiting all three parts of the condition monitoring picture, the return of investment will be high 

compared to other type of investments, because it has a 3D impact on the information flow in a production 

facility.  This is illustrated in the following Return of Investment Tree, see Figure 1. 

  

Figure 1: The EWA platform creates high-quality sensor data and insights for 1) Predictive Maintenance, 2) within Daily Process 
Insights and 3) for AI and ML support. 
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2. Predictive Maintenance 

Regarding predictive maintenance a quote from the Nobel prize-winning Quantum physicist Niels Bohr 

states: "It is difficult to make predictions, especially about the future“.  

Forecasting can be a dangerous art, as it easily breakdown due to unexpected events that can’t be 

incorporated into a model. To optimize production time and minimize maintenance cost, a shift from 

normal prescriptive maintenance (regular time intervals) to predictive maintenance has emerged. It is 

important to align expectations, as predictive maintenance is not the same as the ability to foresee the 

future. Based on current condition monitoring values, and the trend leading up to this, a qualified 

estimate can be made for the coming measurements. But there is no black magic involved in predictive 

maintenance. 

 

Predictive maintenance is not a time prediction (as e.g. 3641 hours to break down), but more an event 

prediction, like the development of a bearing damage. In isolated applications with known constant 

operation condition, models for time predictions can provide reasonable time estimation before 

breakdown. But in real life applications, where nothing is constant and much is unknown, breakdown time 

prediction will be with high uncertainty and of little practical value.  
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3. The EWA Platform 

A platform for condition monitoring must be build much more robust than the machinery it is monitoring 

and protecting. It must withstand impact from many sources like vibration forces, high pressure cleaning, 

tough handling, water and chemical liquids, pressure from submerged installations etc. The parameter 

robustness must be ensured using a foundation of multiple signal sources. This makes the design of a 

platform for condition monitoring a technical challenging task, and the EWA Platform is created with this 

mindset. 

Machine insight is obtained with real-time analytics of sensor signals, that capture the essential operation 

of the machine. Many IoT solutions are blinded 99% of the time, as they are only measuring on an hourly 

basis to save battery power, and therefore often miss the big picture in many applications. The tradeoff 

between a battery power wireless platform and a powered wired platform comes down to a choice 

between flexibility and data insight. The EWA platform is designed for data insight, a wired edge processing 

platform where all algorithms are updated every second - providing a time resolution 3600 times larger 

than most IoT platforms. 

The quality of condition monitoring parameters is depending on two things – the algorithms and the sensor 

signals. The purpose of the sensor signals is to capture the essential operation of the machine, and 

robustness comes by using a multi sensor approach. Traditionally, vibration analysis has been the primary 

tool for route-based maintenance, but for autonomous CMS systems, vibration analyze often comes in short 

to be insufficient. The required robustness for autonomous CMS systems is obtained by combining two 

fundamental signal domains - vibration and magnetic. The synergy is very strong, and it counteract many of 

the limitation seen in “vibration-only” solutions. 

Quality sensor signals require quality sensor components, and they are costly: 

• The EWA vibration signals are measured in 3D, using three individual MEMS sensors (ADXL1002) 

from Analog Devices. They are analog with a linear frequency response range from dc to 11 kHz, a 

resonant frequency of 21 kHz and a noise floor of 25 µg/√Hz. To this date, ADXL1002 is the best  

(and most costly) accelerometer for embedded applications.  
 

• The magnetic signal is measured using a 3D coil. The benefit of using coils from Hall sensors are 

higher sensitivity, low noise, but at the expense of a frequency dependent response.  
 

• The temperature is measured with an I2C TMP1075 temperature sensor, with a temperature 

resolution of 0.0625°C and a temperature accuracy of ±0.25°C, in the range from −55°C to +125°C. 

 



White Paper EWA sensors for condition monitoring on rotating machinery  

 
 

Page | 5  
 

All sensor signals are sampled and processed by an ARM Cortex M7 microcontroller from 

STMicroelectronics. The interface to the platform is both visual (4 LEDs for Power, Rotation Direction, 

Modbus status, and Machine Health) and through a field bus interface (Modbus RTU). The principle is 

illustrated in the following Figure 2: 

Some condition monitoring parameters are best measured in the vibration domain and other parameters 

are best measured in the magnetic domain. The overlap of parameters measurable in both domains benefit 

in robustness, being immune from contributions from other operating machinery. 

The EWA sensor is a new solution in this context, offering unprecedented insights by combining both 

vibration and magnetic measurements together with edge analytics, where all parameters are recalculated 

every second. The key benefits of a hybrid sensor platform like the EWA sensor platform, measuring both 

the rotating centrifugal force in 3D and the rotating magnetic field in 3D, is selectivity and robustness. The 

EWA sensor calculates a long range of parameters every second and states all results in a Modbus table for 

customers’ access.   

The EWA Sensor algorithm portfolio is illustrated in the following Figure 3. 

 

 

 

Figure 2: Schematics illustration of the EWA sensor platform. It illustrates the three sensor domains (magnetic, vibration, 
temperature), the ARM Cortex-M7 MCU and outputs both as visual LEDs and through Modbus RTU interface. 
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Algorithms are utilizing different parts of the vibration spectra, and to optimize processing speed and 

spectral resolutions, the signal processing platform is designed as a multi-rate system with three different 

sampling rates: 32kHz (Band 1), 8kHz (Band 2) and 2kHz (Band 3).  

The following Figure 4 illustrates the three bands marked in red, on top of a vibration spectra plotted in 

blue. The same figure also illustrates which part of the spectrum is used by the different algorithms:  

 

Figure 4: The EWA sensor platform works with a vibration level bandwidth of 16 kHz. The blue curve is a monitored vibration signal, 
where the y-axis states the actual vibration levels. On top of this figure is added, where the significant signatures for different sensor 
parameters are placed in the frequency spectrum (the parameters are stated on the right-hand side of the plot). 

Working in a 16 kHz bandwidth has two main benefits: it is possible to detect parameters with signatures in the higher frequency 

band (e.g. cavitation), and it increases the fault detection parameter robustness.  

Figure 3: The EWA sensor portfolio. 
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Many failure modes introduce a periodic structure in the vibration signal, and a corresponding harmonic 

structure in the spectra. Higher bandwidth of the accelerometers will increase the number of detectable 

harmonic components, and thereby boost the feature gain. This is a major differentiator from low spec 

accelerometers often seen in many IoT devices. Accelerometers with a bandwidth of 2-3 kHz will only 

reproduce a finite number of harmonics, and thereby not boost the feature gain from the noise floor. One 

algorithm that benefit from this phenomenon is the bearing fault detection algorithm based on Cepstral 

Analysis. 

 

The front of the EWA sensor contains four LED to provide basic information to the user and the walk-around 

service staff, see Figure 5. 

 

 

 

 

Figure 5: LED indications on EWA sensor front. 
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4. Submersible sensor 

The mechanical design of the EWA sensor is inspired by a diving watch, to enable it to be submersible into 

tank environments and withstand harsh industrial applications.  

The sensor house is constructed as a stainless-steel pressure capsule with O-ring gasket for both housing 

and cable gland. It is rated for 10 meters depth but tested with a depth of 30 meters. 

 

 

 

 

 

Figure 6: Encapsulation testing, of the EWA sensor. 
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5. RPM (Rotation Per Minute) 

The most important question regarding rotating machinery is to confirm whether the machine is operating 

or not – do we have a rotation?  

A lot of technology developments have emerged since machine RPM was measured using vibrating reed 

tachometers – a mechanical resonance design with a range of accurately calibrated reeds, tuned to selected 

frequencies of vibrations, indicating the speed in 

RPM on the meter’s scale (see this section’s 

header picture). 

However, vibration on the line frequency is not a 

clear sign of an operating machine - it could be 

the operation of the machine next to you.  

To determine the rotation speed and rotation 

direction for a machine, the EWA sensor 

measures both the vibration force and magnetic 

field using 3D sensors in both domains. By 

combining Vibration Signature Analysis and 

Motor Current Signature Analysis, a very robust 

measure of the machine RPM is obtained for 

both shaft and magnetic rotation.  

RPM is a signed number, where positive RPM 

indicates clockwise rotation (CW) and negative 

RPM indicates counterclockwise (CCW) rotation. 

In general, rotation speed is often regarded as a 

fixed number, but nothing could be more 

misleading. 

 

 

Figure 7: A machine produces both a rotating magnetic field (North 
and South pole) and a rotating centripetal from unbalance mass. 
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Rotation speed is a time function, and the RPM fluctuation of a pump impeller contains a lot of information 

on the pump loading and the liquid homogeneity - this will be evidenced with the EWA sensor when the 

RPM is estimated with one second time resolution - as illustrated in the following recording from a 

wastewater pump application. 

The figure illustrates the recorded Modbus data for vibration RPM (orange curve) and magnetic RPM (blue 

curve). The magnetic RPM is driving the vibration RPM (the shaft is the driven part). In the case of an AC 

motor (as we have here), the curves will be offset with the Slip Speed of the motor. The Slip Speed provides 

a lot of insight about the operation of the machine, and it is therefore extracted as a separate parameter – 

see later section. The absolute size of the Slip Speed is related to the loading of the machine, and the 

fluctuation of the vibration RPM is related to liquid homogeneity and pump clogging.  

With a time resolution of one second, even small operation events are captured by the RPM parameter, like 

the short reverse rotation of a pump during startup, see Figure 9. 

Figure 9: Measured rotation speed for a pump, with a short reverse rotation at upstart. 

Figure 8: Measured RPM for a wastewater pump with a one second time resolution. The blue curve is the measured electrical speed 
(in RPM) of the magnetic field, and the orange curve is the measured mechanical rotation speed (in RPM) of the rotor shaft. 
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6. Slip Speed 

In theory, the Slip Speed is defined as the difference between magnetic RPM and the vibration RPM.  

However, this introduces some large glitches in the start/stop process, where the magnetic RPM might be 

3.000 RPM and the vibration RPM is small, as the machine is ramping up. To counteract these cases, the 

calculated Slip Speed parameter is obtained by median filtering the RPM difference. 

The Slip speed can be separated into an DC part (mean of the slip speed) and an AC part (slip speed with 

mean removed). The slip speed DC is a low noise version of the slip speed and are related to the loading of 

the motor - this parameter is stated as Slip Speed on the Modbus. The slip speed AC is the noise on the 

original slip speed and is 

Figure 10: Measured slip speed, using a median filtering. 
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 related to inhomogeneous of the pumped liquid. The slip speed AC parameter can be access from the 

development part of the Modbus address space. 

 

 

7. Rotation Direction 

Rotation speed, measured in RPM, is a signed number, where positive RPM indicates clockwise rotation 

(CW) and negative RPM indicates counter clockwise (CCW) rotation. The sign of the RPM indicates the 

actual rotation direction of the motor and is measured as a separate parameter.  

Rotation direction is a fundamental parameter for rotating machinery, and therefore this value is indicated 

on the sensor front-end with a dedicated LED: Green indicates clockwise rotation (CW), Red indicates 

counterclockwise (CCW) rotation, and NO LIGHT indicates no rotation (N). See Figure 11. 

The rotation convention is “drive to 

driven”, where the standing behind 

the motor in the drive-end define 

the rotation direction. If another 

convention is used, the definition 

can be reversed using a specific 

setup register address on the 

Modbus.  

Rotation direction is an important 

parameter, as rotation direction can 

be mistakenly switched after a 

machine service, if the power 

cables are incorrectly reconnected 

by mistake. Numerous real-life 

cases exist with sewage pumps, 

that have been operating for years with wrong rotation direction, without anybody has noticed anything, 

other with the result of lower performance (can be reduced with up to 50-60%). 

Figure 11: A LED on the sensor front indicates the actual motor rotation direction. 
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The Rotation Direction parameters can be accessed as a dedicated Modbus parameter, being updated every 

second. The Modbus parameter value 1 indicate clockwise rotation (CW), the value 2 indicates 

counterclockwise (CCW) rotation, and the value 0 indicate no rotation (N). See Figure 12. 

 

 

The rotation direction algorithm has two EWA patents pending. 

  

Figure 12: Monitoring of machine rotation direction.  

“0” indicates “pump not running”, “1” indicates “pump running clockwise”, and “2” indicates “pump running counterclockwise”. 

Data illustrate a reverse rotation at pump startup, to avoid or minimize eventual impeller clogging. 
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8. Start/Stop 

One of several additional process insight parameters that can be derived from a robust RPM algorithm is the 

start/stop count. The Start/Stop algorithm counts the shift from zero to non-zero RPM, both as the number 

of start/stop events within the last 24-hour time frame and as a total accumulated count for the period 

since the sensor was installed. 

Figure 13: The upper plot illustrates start/stop counts, where each plotted value is measured for a 24-hours operation period. The 
lower plot illustrates the measured number of total start/stops (accumulated value), since the sensor was installed. 
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9. Operation Time 

The operation time of the machine is another parameter derived from the RPM algorithm - measuring the 

operation time with a RPM larger than zero. The operation time is measured both as the operation time for 

the last 24-hour time frame, and as a total accumulated operation time for the machine, see Figure 14. 

Figure 14: Upper plot illustrates the daily operation time for a period of 8 days, for two redundant pumps. The lower plot illustrates the 
total operation time of the two redundant pumps since the sensors were installed on the machines. 
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10. Unbalance 

The effect from a mass unbalance in a rotating system is a centrifugal force, that is increasing with the 

square of the rotation speed and with the actual amount of mass unbalance.  

It manifests itself in the vibration spectrum in the form of an energy component at a frequency 

corresponding to the rotation frequency of the shaft.  

Figure 15: Illustration of unbalance mass (m) on a motor, as the center of gravity (COG) is not similar as the center of 
rotation (COR). 
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The measured unbalance level depends on the actual sensor mounting position, because structural mobility 

might either attenuate or amplify the measured unbalance level, depending on the machine rotation 

frequency.  

Unbalance is measured using acceleration sensor measurement (mm/s2) and converted to velocity (mm/s), 

to reduce frequency dependency. Because the unbalance level is measured every second, the EWA sensor 

captures both short start-stops and longtime operations. 

Figure 16: Measurement of the unbalance level, as the high of the 1X peak in the frequency spectrum. 

Figure 17: Plot of measured values for pump unbalance over a four-day period, with monitored data in a 1 sec. resolution. 
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11. Vibration RMS 

The classic measure of vibration level is the corresponding Root Mean Square (RMS) value, as this is the 

“effective value” of a signal with a dynamic nature.  

One can say that it is the most popular numeric value describing average “vibration level” of a certain 

machine. On the other hand, it does not provide much insight into the source of the vibration.  

The Root element indicates calculating (in the last step) a square root, the second element Mean indicates 

mean value and the third Square indicates that each value of the signal is squared, see Figure 18. 

The sequence of operation is inverted relative to consecutive letters in the RMS abbreviation. 

An RMS value is also known as the effective value and is defined in terms of the equivalent heating effect of 

direct current. The RMS value of a sinusoidal voltage (or any time-varying voltage) is equivalent to the value 

Figure 18: Calculation of the Vibration RMS. 
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of a dc voltage that causes an equal amount of heat - as illustrated in the chapter figure above. For a 

sinewave with amplitude A, the corresponding RMS level is simply A/1.41. 

The ISO standard ISO-20816 states that the vibration signal must be measured “in a broad frequency range 

reaching from at least 10Hz to 1.000Hz”.  

The ANSI standard states that “The unfiltered root-mean-squared (RMS) vibration reading shall be recorded 

at the top motor bearing location”.  

To be able to compare measurements with severity charts, it is important to align specifications regarding 

filtering, sensor position etc. Examples of characteristics are stated in the following Figure 19. 

 

It should be noted, from using Parseval’s Theorem, that the RMS value can both be calculated from the 

vibration time waveform and from the corresponding Vibration spectra. 

 

The EWA sensor algorithm for Vibration RMS calculates the value as RMS value of the bandpass filtered (10-

1.000Hz) velocity spectra with four averages, following the recommendation from ISO-20816. 

 

 

Figure 20: How the EWA sensor are calculating the Vibration RMS value. 

Figure 19: Left picture is from the ISO-20816 standard. Right plot is from ANSI/HI 11.6-2017 standard. 
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Another signal metric closely related to the RMS is the Crest Factor or Peak Factor. The Crest factor is a 

dimensionless ratio used to characterize a waveform. The term defines the ratio between the Peak values 

(either positive or negative) of a waveform to its RMS value, and is a measure of how far the waveform 

deviates from its average value: 

When the Crest Factor increases, it indicates that the waveform is becoming more peaked, and it is used in 

many applications to indicate a possible failure. As a peak detector, the Crest Factor is more sensitive than 

the RMS value, as indicated in the following case, involving a defect spring in a non-return valve in a 

pumping station: 

The actual valve is a non-return valve from AVK1:  

“The spring tension ensures fast and gentle closing which prevents water hammer. If a pump stops and the 

forward flow reverses back down the line towards the pump, before the check valve has fully closed, the 

flow will force the valve door to slam onto its seat.  This scenario can almost instantaneously stop the 

reverse flow and it is this instantaneous stoppage which results in pipeline water hammer.  This can produce 

loud hammer noises which is not the noise of the valve coming into its seated position but is the stretching 

of the pipe under these conditions.”    

 
1 AVK UK, ”An Introduction to Non-Return Valves and the Importance of Correct Selection”. 

Figure 22: Illustration of the Crest Factor, relating peak and RMS levels into 
one performance parameter. 

Figure 21: Illustration of corresponding measurement of Vibration RMS and Vibration Crest Factor, for an application with a non-
return valve with a broken spring. The broken spring has been exchanged at 14:40. 



White Paper EWA sensors for condition monitoring on rotating machinery  

 
 

Page | 21  
 

 

Besides RMS and Crest Factor, the EWA sensor also calculates signal metrics like Sample Standard deviation, 

Kurtosis, and Skewness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Pictures from an application. Picture to the left illustrates the broken non-return valve spring, and the 
picture to the right shows the valve with a new inserted spring. 
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12. False Brinelling 

Forcing a machinery to vibrate, while it is not operating, can be very harmful to machine parts like shaft 

seals and bearings. These vibration impacts can originate from transportation to customers, but they can 

also come from surrounding operating machinery after installed at customer site.  

When the machine is installed, the vibration impacting a machine will come from two sources: primarily 

impact from self-induced vibration during operation, and secondary impact from surrounding machinery 

while the machine itself is not operating.  

When talking of bearing and bearing damage, this type of damaging 

vibration has been named ”False Brinelling” in the literature. When a 

machine with ball bearing is in operation, the bearing balls are 

rotating in the race ways, and the loading from the shaft + vibration 

is distributed over the surface of the race ways. But when the 

machine bearing is not operating, the balls are in a fixed position, 

and all load + vibration will impact the bearing race area on a limited 

number of points (number of balls).  

The damage from false brinelling can visually be inspected by 

disassembling the bearing. It has a distinguished pattern - see Figure 24. 

 

Figure 24: A damaged bearing, due to false 
brinelling. 
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The EWA sensor measures the level of False Brinelling on a machine as a ratio between the received 

vibration energy while the machine is not operating (EStopped) compared to the total received vibration 

energy (EStopped+ ERunning): 

𝐹𝑎𝑙𝑠𝑒 𝐵𝑟𝑖𝑛𝑒𝑙𝑙𝑖𝑛𝑔 =  
𝐸𝑆𝑡𝑜𝑝𝑝𝑒𝑑

𝐸𝑆𝑡𝑜𝑝𝑝𝑒𝑑 + 𝐸𝑅𝑢𝑛𝑛𝑖𝑛𝑔
∙ 100% 

 

The False Brinelling Ratio is calculated on a 24-hour basis. From the RPM parameters, the sensor knows 

when the motor is running and when it is stopped. The principle can be seen from the figure below. 

The top graph illustrates the measured RPM from an installation with two pumps. The pumps are operating 

in an alternating mode, where each pump starts with a short reverse rotation. The second graph illustrates 

the corresponding measured Vibration RMS level for the same time-period as shown in top graph. By 

inspecting the first operation cycle of pump 1, a considerable level of vibration is transferred to the non-

running pump 2. The same observation can be seen during the first operation cycle of pump 2. For this 

installation, the False Brinelling ratio is up to 39% for pump 1 and 50% for pump 2.  

Vibrations are often transferred between machines through stiff piping or coupled foundation. 

General Bearing Fault Detection algorithm will first detect a bearing defect, when the bearing has become 

damaged, but the False Brinelling algorithm will detect an installation issue from day one of operation, and 

proper intervention can be initiated to prevent bearing damage. It is a measure of installation quality. 

From a machine manufacture point of view, it is a strong tool for root-cause-analysis in warranty cases with 

premature bearing break down. 

Figure 25: Upper plot illustrates the pump rotation speed. The middle plot illustrates the corresponding measured Vibration RMS. 
Bottom plot illustrates the calculated value for False Brinelling (False Brinelling ratio), plotted for a time-period of 28 days. 
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A last illustration of the False Brinelling problem is from a pumping station with two 37kW pumps installed. 

 

The case in Figure 26 corresponds to a False Brinelling factor of 82% for a 24-hour period. The root cause 

could be a soft foundation, combined with gyro stabilization during normal operation.    

 
 

The False Brinelling algorithm has an EWA patent. 

Figure 26: Monitoring data from a real application. Upper figure illustrates motor RPM and the lower plot illustrates the 
corresponding Vibration RMS level. A time interval has been highlighted where the machine is not operating, but it is vibrating 
considerable. From the Vibration RMS data, the vibration level is 2.6 mm/s while operating and 13 mm/s while not operating.  

In this case, vibration from a second running pump provides a vibration contribution 5x larger, compared to when the pump is 
running itself.  
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13. Cavitation 

One of the classical issues with pump systems is Cavitation. It is a formation of vapor bubbles within a liquid 

at low-pressure regions in the machine, that occurs in places where the liquid has been accelerated to high 

velocities, as seen in the operation of centrifugal pumps, water turbines, and marine propellers.  

Cavitation is undesirable because it produces extensive erosion of the rotating blades, additional noise from 

the resultant knocking and vibrations, and a significant reduction of efficiency, because it distorts the flow 

pattern and creates fluctuations of pump speed. It’s a symptom of insufficient net positive suction head.  

 

Figure 27: Illustration of vapor bubbles in a pump system, showing the development of cavitation in the pump impeller. 
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To some extent, a small level of harmless cavitation is always present in pump system. When cavitation is 

measurable using vibration analysis, it is a sign of erosion of the rotating blades, and service intervention 

are needed. 

Some of the known tell-tale signs of pump cavitation are: 

• Random bursts of energy – separated with 1-3 seconds. 

• Vibration level for axial direction > radial direction (lower axial stiffness). 

• Sounds like “marbles” or “gravel” are passing through the pump. 

• Unstable flow and fluctuations of pump speed. 

The EWA sensor Cavitation algorithm is based on a perceptual approach, to capture the modulation level of 

the random bursts of high frequency energy, that can be heard standing next to a cavitating pump. It is not 

the high frequency vibration energy, but the random bursts of high frequency energy that signal cavitation.  

The level of cavitation is estimated as a path length over 10 seconds – illustrated as a blue curve in the 

following figure for both a cavitation case, and a non-cavitation case. 

 

An initial baseline level of this path length is established during the baseline initialization period, and used 

for normalization of both the cavitation parameter, baseline and baseline initialization level, and values are 

transmitted on the Modbus. 

  

Figure 28: Top figure shows the energy content when cavitation occurs. The bottom 
curve illustrates the energy content when no cavitation is present. 
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To illustrate the path length approach for a real-life application, measurement on a 30kW wastewater pump 

is used. Below, normal pump operation for 5-minute is followed with a 30-minute cavitation period (inlet 

pressure reduced), and again followed with a 5-minute of normal operation period without any cavitation, 

see Figure 29. 

 

The feature gain factor, defined as the difference between normal mean value and cavitation mean value, is 

32x for this path approach for cavitation detection, see Figure 29. 

To compare the outcome of the Cavitation algorithm to other parameters like the Vibration RMS and 

Unbalance, the Vibration RMS and Unbalance parameter data monitored during a cavitation period are 

plotted in the following two graphs, in Figure 30. The feature gain factor for Vibration RMS and Unbalance is 

respectively 1.24 and 1.25.  

 

  

Figure 30: Monitored parameters for Vibration RMS and Unbalance, on the time when cavitation occurs. 

Figure 29: Cavitation occurs at 9:38 and is present until 10:07. 
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14. Bearing Fault detection 

Bearings are key machine components in any rotation machinery, and under normal operation they just 

produce a low level of vibration of a random nature. When a fault is developing inside the bearing, the 

bearing’s vibration pattern changes and the overall vibration level increases.  

In the case of an initial point damage (like a crack), the vibration pattern shifts from a low-level random 

nature to a higher level of periodic nature. Every time a ball role over a crack, a high vibration sound is 

produced, and the impact frequency of the crack is proportional to the shaft RPM.  

Four different impact frequencies are produced dependent on the location of the crack – on the outer race 

(Ball Pass Frequency Outer race, BPFO), inner race (Ball Pass Frequency Inner race, BPFI), balls (Ball Spin 

Frequency, BSF) or cage (Fundamental Train Frequency, FTF) – also known as the Characteristic Defect 

Frequencies (CDF). Under normal working condition, a bearing should not produce its CDF, so the present of 

one of these frequencies in the vibration signal is a strong indicator of a bearing issue. 

The CDF are property of the bearing geometry, rotational speed, and number of rolling elements and are 

easily calculated frequencies (noted Ω), as shown in the calculations in Figure 31 below. 
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Figure 31: Calculations for the four fundamental Characteristic Defect Frequencies (CDF). 
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To make the CDF independent of the shaft RPM, bearing manufactures often normalize the four 

fundamental frequencies with the shaft rotation speed (Xfactor=CDF/RPM) in the datasheet. When a given 

Xfactor has been determined from a vibration recording, the corresponding fault can be identified from 

bearing manufactures data sheet. A bearing like the SKF6308 bearing has the following Xfactor valuess: 

FTF=0.384, BPFI=4.92, BPFO=3.07 and BSF=4.08, all independent of the shaft rotation speed. 

In practical cases, a fault on a ball will often hit both inner and outer race during rotation, and thereby 

produces a 2*BSF frequency. 

However, a challenge using the CDF approach for bearing fault detection in real life is, that the actual 

bearing data in an installation often is unknown. The nameplate might state DE=6308 (bearing number for 

Drive End), but it only guarantees the external geometry for the installation, but CDF is related to the 

internal geometry of the bearing. Manufactures may use different numbers of balls for the same bearing 

number, and thereby having different CDF values for the same bearing number. 

 

Pump and motor manufactures often do not have traceability on bearing brands used in the machine 

production, but only the bearing number, and after the first service overhauling, nobody knows which 

brand of bearings being installed in the machine.  

It should be noted that one very important property of bearing’s Xfactors are, that they are not integer 

multiples of shaft rotational speed. This characteristic allows us to suspect a potential bearing problem, 

even if the bearing type is unknown. If the vibration data contains a non-synchronous vibration above the 

RPM (like 3.18X), or sub-synchronous vibration below the RPM (like 0.4X), it is highly likely related to the 

bearings, as no other machine component will produce that signature. It will tell us about a bearing issue, 

but it will not tell us whether the bearing problem is within the inner or outer race of the DE or NDE bearing 

(but this is often of no concern – the bearing will be identified during overhauling/service and replaced). 

Every time a ball role over a crack, it will ping the impulse response of the mechanical resonance structure 

of the bearing. This means, that the vibration signal will contain a periodic part (time-period T) related to 

this crack, and the energy (E) of the impulse response will be related to the size of the crack, and thereby 

the severity of the fault. The impact frequency is the number of impact per second (1/T)  –  and this is given 

by the CDF.  

• Impact frequency = 1/T = defect bearing part (inner/outer/ball/case)  

• Impact energy   = A  = defect severity 

  

Figure 32: A bearing like the 6308 is offered by all major bearing companies. 
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A periodic signal will produce a line-spectrum, where the distance between the harmonics will be the 

impact frequency: 

The frequency content of the impulse response (bearing transfer function) does not contain information in 

relation to the actual bearing fault. Its content might start in the ultrasonic range and move down in 

frequency as the bearing fault start to evolve. The information in relation to bearing fault severity is 

contained in the impact frequency and its energy content.  

From a signal analytic point of view, the vibration signal from a bearing crack is generated by a convolution 

between the impulse response function h(t) of the bearing and a pulse-train function d(t) from the crack. 

The information we seek is in the pulse-train function, and not in the impulse response function, so we 

need to separate the two functions again – to do a deconvolution of the vibration signal. A classical 

approach for deconvolution is the Cepstral transformation. It will separate the impulse response and the 

pulse-train into two non-overlapping regions, and thereby make it easy to inspect the pulse-train function.  

The Cepstral transformation is simply a Power Spectrum of a logarithm Power Spectrum, and the procedure 

is illustrated in the following Figure 34. 

 

In general, CDF should not be presented in a vibration signal, and the bearing severity measure will be zero. 

If the Bearing Fault Detection algorithm starts to detect an issue, the corresponding baseline must be 

observed to see how the fault develop. But when a non-zero severity measure is detected, it indicates a 

bearing issue and a coming bearing breakdown.   

  

Figure 33: Illustration of the time period T in the Time Waveform, and the impact frequency 1/T in the 
Frequency Spectra. 
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The EWA sensor’s Bearing Fault Detection algorithm analyzes the vibration signal for dominant non/sub 

synchronous contributions using Cepstral Analysis. When the same impact frequency is found in 10 

consecutive measurements, the corresponding energy level and Xfactor are logged as a severity measure 

for the Bearing Fault Detection. The principle is illustrated in Figure 35 below.  

 

 

 

 

 

 

 

 

 

  

Figure 34: Illustration of an impulse signal in time domain, and the responding signals in power spectrum, log power spectrum and 
in Cepstrum. 

Figure 35: The actual bearing vibration level is found from a Cepstral analysis of the vibration signal. 
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As the level of the bearing fault energy depends on a range of factors (size of machine, distance between 

sensor and bearings etc.), the corresponding bearing Modbus parameters (level, baseline and initial 

baseline) will be normalized with the initial measured baseline level. The parameter will thereby express the 

development of the severity over time, relative to this machine. Levels and Xfactors are maintained for 60 

minutes after last detection (end of operation).    

The following case illustrates a detected bearing fault issue for a motor with 6308 and 3311 bearings.  

 

The Xfactor measured in Figure 36 shows an alternation factor between 4.08 and 8.20 for this installation 

(Inspecting the datasheet for the SKF6308 state the BSF=4.078). Faults on bearing balls are known to 

produce double impact frequencies, as a point of damage hits both inner and outer race during one 

rotation (therefore the monitored Xfactor of 8.20). The core existence of a non-zero Xfactor is a very strong 

indicator of a bearing issue, but it might not be a problem. Many old installations will show sign of bearing 

wear but can run for many years. But if the severity level is doubled within weeks and cross the warning 

level, proactive action should be taking to replace the bearings.  

 

 

 

 

 

 

Figure 36: Bearing fault parameters for a case with a defect ball in a SKF6308 bearing. 
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15. Machine Looseness 

The motion of a loose machine mounting bolt in its hole will not be exhibiting a smooth sinusoidal motion 

of rocking back and forth, but the signal will be truncated by the sides of the hold, and the corresponding 

motion will be something like a squared or chopped sinusoidal. The frequency spectrum will have many 

harmonics of the rotation frequency of the shaft (1X). 

Mechanical looseness comes in many forms like structural frame looseness, cracked structure pedestal or 

improper fit between machine components, all signatured by an increasing number of harmonics in the 

vibration spectrum. Examples of looseness signatures are illustrated in the Figure 37. 

An important fact regarding each type of mechanical looseness is, that alone it is not a cause of vibration. 

Looseness is a reaction of other problems, like unbalance, misalignment, eccentricity, bearing problems etc. 

Figure 37: Signatures for different kind of machine looseness. 
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Removing each of these problems will often remove the symptoms of looseness, but the issue remains. 

Looseness aggravates the situation – mechanical looseness allows much more vibration than would 

otherwise occur from these other problems alone. 

The generation of harmonic components from sinusoidal stimuli are related to a non-linear relation 

between input and out of an electromechanical system – like a loudspeaker.  

When a loudspeaker reproduces an audio signal, input signal and output signal should ideally be identical. If 

this is not the case, there is signal distortion. The Total Harmonic Distortion (THD) describes how much 

influence non-linear distortions have got on an originally sinusoidal alternating signal in the loudspeaker. 

With such a distortion, new overtones (also called harmonics) are created. A low THD is often regarded as 

an indicator for a good loudspeaker system. The THD metric is a good measure for the harmonics 

production, and the analogy between loudspeakers and motors are strait forward – it will provide a good 

measure for looseness.  

The principle is illustrated in the following: 

 

For a looseness application, the THD is only calculated for 𝜔 = 𝑅𝑃𝑀. 

 

 

 

 

 

 

 

 

Figure 38: Calculation of the Total Harmonic Distortion (THD) value, at specific frequencies w. 
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16. Gear Analysis 

The main part of rotating machines contains only of a single rotation system, but in application with the 

need of speed and power conversion between shafts, multiple rotating systems are introduced using gear or 

belt systems.  

The EWA sensor algorithm portfolio contains two algorithms for gears: Spur gears (two rotating systems) 

and Planetary gears (three rotating systems).  

The core parameter for all gears is the vibration level at the Gear Mesh Frequency (GMF). GMF is the 

product of the number of teeth on the gear multiplied by the running speed of the gear. It is not a fault 

frequency, like the four fundamental bearing frequencies, but a normal presented component in the 

vibration signal from a gear, as it is impossible to manufacture perfect gears (teeth profiles, concentricity, 

meshing characteristics etc.). When the vibration at 1x GMF and its harmonics are considered excessive, 

compared to normal levels or initial baseline levels, an analysis should be carried out to identify the cause 

of the problem. This is not only to avoid a breakdown of the gearbox, but it will increase the gear lifetime as 

well. 

 

Like bearing data, gear data like tooth count are often not accessible, and only the gear factor is stated - 

indirectly via a nominal speed number, impacted by the slip speed.  
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For a Spur gear, the gear ratio and the GMF are straightforward and intuitive to calculate, as illustrated in 

Figure 39. 

 

In the case, that the tooth number is not provided but only the gear ratio, the following algorithm will 

search the vibration spectrum for a possible candidate for 𝑁𝐴 and  𝐹𝐺𝑀𝐹:  

The algorithm involves the following steps: 

• The gear tooth size 𝑁𝐴is found by searching the vibration spectra for 𝑓𝐺𝑀𝐹 candidate, that will fulfil 

the following relation 𝐹𝐴̂ ∙ 𝑁𝐴 = 𝑅𝑔𝑒𝑎𝑟 ∙ 𝑓𝐺𝑀𝐹, where 𝐹𝐴̂ is the best estimate of 𝐹𝐴 for the correct 

value of 𝑁𝐴. 

• The second gear tooth size 𝑁𝐵 is found using the gear ratio and 𝑁𝐴 . 

Figure 39: Spur Gear definitions. 

NA is the number of teeth for gear A, and NB is the tooth number for gear B. 

FA is the rotating speed of gear A (in RPM or Hz), and FB is the rotating speed of Gear B (in RPM or Hz). 

Figure 40: Calculation of the spur gear parameters NA and NB. 
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The concept of planetary gears is very different from Spur gear. As stated by the authors Arnaudov & 

Karaivanov of the book “Planetary Gear Grain” - Planetary gear trains make up an extremely large technical 

field. The theory behind them is complex, with many unexpected challenges, while the way they function are 

not obvious and easy to understand. Because planetary gear trains have a reputation for being complex and 

hard to understand - for some, they are borderline mystical. 

When the tooth number for the sun 𝑁𝑠 and ring gear 𝑁𝑟  for a planetary gear are known, the corresponding 

gear Ratio and GMF can be directly calculated from the formulas in the following figure: 

But again, these numbers are often difficult to obtain, as most manufactures of motors are sourcing the 

gearbox from an external supplier and are only focused on the functionality like gear ratio and not the 

number of teeth. In the case, where only the gear ration and the motor RPM (𝑀𝑅𝑜𝑡𝑜𝑟) is known, the 

following algorithm will find the planetary gear tooth numbers, together with the gear rotation frequency, 

GMF: 

  

  

Figure 41: Planetary Gear definitions. 
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The algorithm involves the following steps: 

• The Carrier rotation frequency 𝑓𝑐 is calculated Sun rotation frequency 𝑓𝑠 and gear ratio. 

• The Ring gear tooth size 𝑁𝑟 is found by searching the vibration spectra for 𝑓𝐺𝑀𝐹 candidate, that will 

fulfil the following relation 𝑓𝑠̂ ∙ 𝑁𝑟 = 𝑅𝑔𝑒𝑎𝑟 ∙ 𝑓𝐺𝑀𝐹, where 𝑓𝑠̂ is the best estimate of 𝑓𝑠 for the correct 

value of 𝑁𝑟. 

• The Sun gear tooth size 𝑁𝑠 is calculated from 𝑁𝑟  and the gear ratio. 

• The Planet gear tooth size 𝑁𝑝 is calculated from the geometric constraint for planetary gears. 

• The Planet rotation frequency 𝑓𝑝 can be found from the three googh sizes and the sun rotation 

frequency. 

Tracking and trending the GMF vibration level provides a robust measure of the gear box wear.  Just to 

name an example of the insight, that this algorithm can provide: 

A customer was advised to reduce the rotation speed of a gear motor with 33%, from 1500 

RPM to 1000 RPM to reduce the energy consumption.  

But the corresponding GMF vibration level increased with 200%, as the gear oil was not rated 

to the low speed. For this customer, what has been saved in energy, might be lost in the 

reduced lifetime of the gear box. 

 

The following “collage” (Figure 43) illustrates the steps to follow, from calculating the gear tooth to the gear 

ratio (transmission ratio), and the GMS for the planetary gear. 

Figure 42: Planetary Gear calculation of the three individual gear tooth numbers, together with rotation frequencies. Blue example 
for a gear ration of 4.28 and the corresponding gear tooth numbers. 
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Figure 43: Planetary Gear calculations. 
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17. Water Hammer detection 

Water hammering is a pressure surge created by a rapid change in flow velocity in a pipeline. This 

instantaneous change in flow velocity is often created by a sudden valve closure or pump stopping. It is the 

same phenomena known from signal transmission lines - an impedance mismatch in a circuit or along a 

transmission line will produce a reflection back to the source of the signal.  

Water hammer can result from improper valve selection, in-proper valve location, and sometime poor 

maintenance practices. Swing check valves are prone to slamming because they rely on reversing flow and 

backpressure to push the disc back into the seat. If the reverse flow is forceful (as in a vertical line with flow 

upwards), the disc is likely to slam with great deal of force and potential damaging the casket and leading to 

leakage.  

As Water Hammer is pressure surge of the liquid, it is not directly measurable by the EWA Sensors, as it is 

not in contact with the liquid through a pressure cell. But a derived effect in the form of vibration and slip 

speed discontinuities can be observed and used as a signature for Water Hammer detection. 

An analogy for the motion of the pressure surge can be obtained from a bouncing of a ball. When dropping 

a ball to the floor, it will hit the floor with great force, and bounce-up again. The second time, the ball bit 

the floor, the force will be reduced due to conversion of initial heat/sound/impact energy to the floor and 

the bounce-up height will be reduced. After a couple of bounce rounds, the ball will stop bouncing. The 

time between impact will also be reduced after each bounce. The bouncing pattern is illustrated in the 

following Figure 44. 
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When a large column of water is instantaneously stopped by a barrier (valve or pump), it will bounce-back 

like in the ball analogy. The vibration signature for a Water Hammer is: 

• Time T between impacts will decrease with each bounce. 

• Impact energy A will decrease with each bounce. 

• Signature dataset (𝑇1, 𝐴1, 𝑇2, 𝐴2 ⋯ ) from Water Hammer impacts are the same for different 

machine installations. 

It is not possible to identify a single vibration pulse as a Water Hammer incident, but multiple comparable 

signature datasets are a strong indicator of a Water Hammer problem. The signature dataset will be constraint 

by the piping, flow velocity etc., and it will be reproduceable by each Water Hammer impact.  The principle 

drawing of the time waveform for a Water Hammer case is illustrated in the following Figure 45. 

The Water Hammer algorithm will become available in a coming software release. 

The Water Hammer algorithm has an EWA patent. 

Figure 44: Illustration of bouncing pattern as Water Hammer signature. 

Figure 45: Water Hammer impact monitored and illustrated with the time waveform. Each impact is the impulse 
response of the pipe + valve + pump construction. 
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18. Machine Health 

To ensure production quality and continuity, the performance of the machine becomes very important.  

The performance can be inspected from both daily Operations Parameters like RPM, Unbalance, Slip 

Speed, Cavitation, and from Alarm Parameters like Bearing Fault Detection, and Baseline trending with 

warning and alarm level etc.  

The daily operation parameters are used to optimize and balance production throughput without harming 

the machine, where the alarm parameters are used to detect abnormal level and behaviors (abnormally 

detection) and are more seldom in use.  

This kind of parameter separation is seen in many contexts like the car dashboard: top dashboard 

instrumentation is for daily operation (speed, temperature, fuel level), and the bottom instrumentation are 

alarm parameters (check-engine light, Coolant Temperature light, Transmission Temperature). When driving 

a car, we inspect the ”daily parameters” to insure and follow the expected operation, and we don’t pay 

attention to alarm parameters not appearing. But when one of the car alarms appears, it is often a very 

serious problem and costly to repair.    
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Vibration analysis is used to monitor the condition of rotating equipment and predict machine issues based 

on data trends over time, abnormal frequencies, or the amplitude of the measured vibration.  

The first step to a successful vibration analysis is establishing relevant baseline references and alarm levels, 

as to help identifying when the machine is operating normally and when there is a fault/operation issue.  

Vibration analysts typically use a couple of the following five reference methods to quantity and severity 

evaluate a machine installation: 

1. Baseline readings from the installation time. 

2. Generic severity charts from ISO, ANSI etc. 

3. Equipment manufacturer’s recommendation. 

4. Statistical Data analysis from a large population of the same type of machinery. 

5. Experience. 

The EWA sensor is using a baseline approach. In classical vibration analysis, baselines are established by 

measuring the vibration of a machine when it is in good condition. The initial vibration levels at the sensor 

installation is recorded and used as a reference point for future measurements. By comparing the current 

vibration levels to the established baselines, maintenance personnel can identify trends indicating changes 

in a machine behavior. This information can be used to predict when a machine is likely to fail, allowing for 

proactive maintenance. 

A static fixed-value baseline approach has some practical challenges: 

• Choosing the correct time to make the baseline measurement (considering machine loads, seasonal 

variations over winter and summer etc.). It the baseline is set too low, it will provide false alarm, 

and is the baseline set too high, it will make the system blind. 

•  Drift of parameters related to aging and normal wear. 

•  New baselines are required after each machine overhaul and major service. 

Regarding warning and alarm levels, it is generally believed that in the absence of other specific information 

a doubling of an acceptable vibration level is an indicator of trouble, and a tripling of the level is cause for 

major concern. The factor setting of 2 for warning level and a factor of 3 for alarm level are completely 

aligned with the levels given by the ISO 20816 generic severity chart.  

The principle of using a static Baseline level (B) with a corresponding static warning level (2·B) and static 

alarm level (3·B) is illustrated in the following graph in Figure 48. 

Figure 46: Instrument panel (dashboard) in a car, with operation parameters and alarm parameters. 
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Parameter levels for Vibration RMS, Unbalance etc. for a new machine will drift over time because of 

machine aging and normal wear. With a static setup, a machine parameter can drift into a warning or alarm 

situation over a year, even for a machine without any severe faults (just due to normal wear and tear). This 

is illustrated below. 

 

The static baseline is a measure of the parameter level from a new machine. It can be an advantage to 

update this level continuously, to counter-act machine wear and to obtain a baseline aligned with the aging 

of the machine.  

The EWA sensor is based on a Dynamic Baseline approach. The dynamic EWA parameter baseline is 

designed as an adaptive filter, that tracks the behavior of the individual sensor parameter, in a rigid and 

slow manner. The principle is illustrated in Figure 50 and Figure 49. 
 

Figure 48: Illustration of monitoring data (red graph), added a static baseline and static warning and alarm limits. 

Figure 47: Illustration of the development in a monitored parameter over time (red graph), due to machine ageing 
and wear. 
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 The dynamic baseline is slow, and it will not adapt to small local variations in the parameters: 

The advantage of using a dynamic baseline approach, where the baseline is adapting rigid and slowly to the 

measured parameter, is a flexible solution for an edge-based standalone sensor. Just to name some points: 

• The baseline will adapt to normal machine aging and wear. 

• Baseline tracking can be activated at the time of installation, and any deviation related to wrong 

timing will slowly be corrected within a week.  

• New parameter levels due to a service visit will automatically initiate an adjustment of the baseline. 

As a last line of defense, a static Alarm level is defined as four times the baseline. The static alarm (BInitial) is 

generated after 4 hours of machine operation.  

  

Figure 49: Illustration of a monitored parameter signal with sudden evidence (red graph), using dynamic baseline 
with dynamic warning- and alarm limits. 

Figure 50: Illustration of a monitored parameter (red graph) using a dynamic baseline, with corresponding 
dynamic warning and dynamic alarm limits. 
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From the above definitions, the EWA sensor operates with 1 warning and 2 alarm levels, defined by: 

• Dynamic Warning Level  = 2 · B 

• Dynamic Alarm Level  = 3 · B 

• Static Alarm Level  = 4 · BInitial 

The principle is illustrated in the following figure: 

The initial baseline value (BInitial) recorded at the time of installation, can also provide valuable insight and 

knowledge about the single parameter relative to its time of installation: 

  

  

Figure 52: Illustration of the Initial Baseline plotted together with a parameter data, plotted over a certain operation time. 

Figure 51: Illustration of dynamic baseline and dynamic warning/alarm levels, added a static alarm. 
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The EWA Sensors algorithm for Machine Health is founded on the concept of dynamic baseline tracking 

with belonging dynamic warning/alarm levels.  

When the sensor has just been installed, it has no information regarding normal and high parameter levels, 

as this requires: 

• information about machine size - is this a 2kW motor or an 25kW motor? 

• information about machine wear history  - is this a new installation or an old installation? 

• information about previous failure history - is the machine already in severe unbalance? 

In general, this information is not available for most installations and would be difficult to obtain, as every 

machine is different in respect of piping, foundation, application - all are impacting the machine operation.  

The EWA sensor is designed as a ”plug and play” sensor with no initial setup or application configuration. 

The sensor will auto-detect the actual machine orientation (Horizontal or Vertical) and the Motor Pole Pair 

number. When all the auto-detected values are regarded as “good”, the sensor will be powered on, and the 

parameter baselines will adapt to current monitored parameters values within 12 hours of machine 

operation.  

The EWA sensor is automatically generating baselines for 8 parameters, see Figure 53 (more parameters will 

follow in future): 

• Unbalance 

• Bearing Fault Detection 

• Cavitation 

• Temperature 

• Vibration RMS X-axis 

• Vibration RMS Y-axis 

• Vibration RMS Z-axis 

• Gear Mesh Frequency 

When a measured parameter crosses any of the three levels for more than 10s, a corresponding flag is 

raised at the Machine Health center. The flag is automatically put down again after one hour with no 

warning/alarm occurring. 
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The Health Center algorithm will indicate the 

highest severity level, both as a status on the 

Modbus and indicated on the Alarm LED on 

the front of the EWA Sensor, see Figure 54. 

After sensor power-on, the sensor will use 

around 12 hours to build-up the baselines. 

During this time, the Health Center will be 

inactivated, as it will not able to make any 

assessments without baselines. 

 

 

  

Figure 54: Sensor LED indications for status of the Health Center. 

Figure 53: The EWA Algorithm Portfolio consists of fault parameters with their individual calculated dynamic baseline, and 
operation parameters and development parameters without baselines.  
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The graph below illustrates a real-life example for monitored vibration RMS with baseline and alarm / 

warning levels:  

 

Currently, 8 parameters are tracked with baseline and alarm levels. When a parameter crosses a warning or 

alarm level, the Health Status flag for the parameter will be updated with the value 2 (warning) or 3 (alarm). 

If the Health Status for a parameter persists for more than 10 seconds, the health status flag will be 

transmitted to the Machine Health. The Machine Health algorithm will maintain the Health status for a 

period of one hour, after the Health Status flag has been cleared. This illustrated in the following graph: 

Figure 56 illustrates the Machine Health and the corresponding 8 parameter Health Status. The 8 Health 

Status parameters are displayed with an offset, to avoid overlapping graphs. The EWA sensor starts with a 

12 hours initialization period to build the baselines. After two days of operation, the bearing algorithm sets 

the Health Status flag, to signal a warning issue. This is later upgraded to an alarm issue.   

The EWA Health Monitoring and the dynamic approach has an EWA patent pending. 

  

Figure 55: Baseline calculation for the vibration RMS parameter, for a pump installation. The calculated dynamic warning and alarm 
limits are also plotted. 

Figure 56: Monitored signal for Machine Health, showing both Normal condition (1=Normal), Warning condition (2=Warning) and 
Alarm condition (3=Alarm). When the Machine Health flag has been set, it will keep the Health status for one hour after the flag has 
been cleared. 
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19. ISO 18436 Compliance 

Condition monitoring of rotation machinery has become so mature, that the International Organization for 

Standardization (aka ISO) has defined a dedicated certification standard ISO-18436, that specifies 

requirements for the training, relevant experience, and examination of personnel performing condition 

monitoring and diagnostics of machines using vibration analysis. The standard’s part 2 of this ISO 

certification “Vibration condition monitoring and diagnostics” are divided into four classification categories, 

from Cat I: Introduction Level to the Cat IV: Advanced Level. 

The benefit of a certification standard within condition monitoring is to outline best practice for condition 

monitoring for rotation machinery, covering every aspect from sensor design to how to measure and 

interpret vibration data. When being in compliance with ISO-18436, all professionals are ”talking the same 

language”, and measurement methods are comparable and aligned. 

EWA Sensors has selected to build the sensor platform on this huge foundation of knowledge and has 

therefore attended all certifications (Cat I to Cat IV) from the three leading certification institutes: Mobius 

Institute, Technical Associates of Charlotte and Vibration Institute. 

 

  

Figure 57: The three main providers of ISO 18436-2 certifications. 
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By following the 12 sections (Cat I to Cat IV from these three institutes) a solid state-of-the-art foundation 

has been built, to guide the design of an innovative sensor platform and algorithm portfolio for the EWA 

sensor.  

 

 

Figure 58: The EWA Sensors has achieved ISO 18436-2 certifications CAT IV from Technical Associates and Mobius Institute, and 
CAT III from Vibration Institute. 

Figure 59: Route-based monitoring on a dry-installed wastewater pump. 
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20. Remote Firmware Upgrade 

The benefit of edge processing is fast and local processing of data, as the algorithms are running in a local 

target.  

To keep the algorithm portfolio of an EWA sensor up-to-date, and enable remote sensor updating with new 

parameters, the EWA sensor firmware can be updated over the Modbus.  

Currently, there are two approaches for sensor firmware updating: 

• PC software from EWA Sensors, connecting the sensor Modbus network to a PC using a USB 

converter, and updating sensors using the EWA Bootloader PC program.  

Individual EWA sensors on the network can be addressed and updated – one at a time. Details can 

be found in the pdf document EWA PC Bootloader Use Guide. 

• Customer implementation of the update procedure in gateway, PLC or SCADA – following the EWA 

software guide for updating the sensor. Details can be found in the pdf document EWA Bootloader 

Protocol Specification. 

Both approached are supported by two pdf documents. 

 

Firmware updating of an EWA sensor takes approximately 55 sec. per sensor. The following figure illustrates 

a firmware update using the PC software. The current version is through a PowerShell window or a windows 

command prompt, but a pure Window version will soon be available. 
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Figure 60: Firmware updating, using the EWA PC bootloader software. 
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21. Raw Data access 

The EWA sensor is an Edge Device, where all signal analytic are performed by an embedded powerful 

microcontroller, and the resulting parameters are accessible using Modbus.  

Moving all raw sensor data to a cloud platform will be both technical challenging (continuously streaming of 

6 channels with 32kHz bandwidth and 16bits data) and expensive in data cost. An edge solution is a more 

elegant and green solution, as data stay at the source and are processed locally by a low-power processing 

unit. The technical requirement for communicating with an edge solution is easily obtained through the 

Modbus fieldbus (as used in many customer installations).  

In three cases, the access to raw data become mandatory, also for an edge device like the EWA sensor: 

• Foundation for developing new sensor algorithms and parameters. 

• Manual data inspection. 

• AI and ML support 

To fulfill this need, the EWA sensor is providing continuous access to 2 seconds of both vibration and 

magnetic raw data with a sampling frequency of 2kHz. Five Modbus registers are used for this: two registers 

for a floating-point vibration sample, two registers for a floating-point magnetic sample and one register for 

indexing. A coherent sample set for vibration, magnetic and index are obtained during every block transfer 

of the parameter list, and a complete 2 sec. data set are thereby obtained approximately every hour, at no 

extra cost.  

The indexing is included with each Modbus reading. In many cases, the raw data will be an extra bonus, to 

be used when going back to inspect historical data. To decrease the time to retrieve a complete dataset, a 

dedicated block transfer only of the five Modbus registers with raw data can be made - but this will block 

for the normally communication on the remaining Modbus protocol. 
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The retrieval of raw data is illustrated in the following graph. The first plot shows the consecutive reading of 

the parameters for a duration of 24 hours. This track contains approximately 20 complete raw data sets. 

Subsequently, the raw data for the first running pump operation cycle at 8am is extracted at the bottom 

plot. 

The EWA sensor is a multi-rate platform using sampling frequencies of 2kHz, 8kHz and 32kHz. Currently, the 

raw data access is provided to the 2kHz domain, but access can easily be extended to both 8kHz and 32kHz, 

if needed. 

  

Figure 61: Upper plot shows associated values of indexing, raw vibration data and raw magnetic field data for a 24-hour operation period. 
The lower plot is an extraction of 2 seconds of data from the upper plot, for a pump running sequence started at 8am. 
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22. Customized algorithm design. 

The EWA sensor is a powerful edge device with an internal 480MHz Cortex-M7 microcontroller for signal 

analytics. The current load of the microcontroller is only 50%, so the platform is capable of running more 

algorithms.  

EWA Sensors are therefore offering customers to develop customized solutions, tailor-made to specific 

machinery and applications, that are not covered by the current algorithm portfolio.  The EWA sensor is a 

multi-rate platform with sensor data in both 2kHz, 8kHz and 32kHz format, for both 3D vibration and 3D 

magnetic signals. 
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23. Technical sensor documentation. 

The EWA sensor is documented and supported in following technical documents: 
 

1) One-Pager 
2) Datasheet 
3) User Manual 
4) Modbus Interfacing Guide 

5) PC Bootloader Use Guide 
6) Bootloader Protocol Specification 
7) Whitepaper, “EWA sensors for Condition 

Monitoring on Rotating Machinery” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 62: Technical documentation, for the EWA sensor. 



 

  
 

ABOUT EWA Sensors: 
 

EWA Sensors is a Danish company, developing and manufacturing edge-based sensors for 

condition monitoring and predictive maintenance of rotating machinery. EWA Sensors core 

capabilities lay in high-quality sensor signals and in advanced algorithm design. 

Algorithms, both for edge-based and cloud-based solutions, are not better than the data 

quality they are fed with. EWA has focus on the sensor monitoring circuits, to secure high-

quality data and the required signal bandwidth for algorithm development. 

All EWA signal processing and algorithm designs are based on signature design in time 

domain and in frequency domain. Furthermore, algorithm design use combination of 

signals in one-, two- or three dimensions (x-, y- and z-dimension), to secure robust and 

strong parameter estimation, and for new signatures and parameter designs for the future. 

On top of the algorithm design is added an Early Warning Analytics (EWA) layer, making a 

clear and easy to understand evaluation on each single sensor parameter. 

 

 


